348
Views
10
CrossRef citations to date
0
Altmetric
Original Article

Attaining high bending stiffness by full actuation in steerable minimally invasive surgical instruments

, , , &
Pages 77-85 | Received 07 May 2014, Accepted 07 Jul 2014, Published online: 29 Sep 2014
 

Abstract

Introduction: Steerable instruments are a promising trend in minimally invasive surgery (MIS), due to their manoeuvring capabilities enabling reaching over obstacles. Despite the great number of steerable joint designs, currently available steerable tips tend to be vulnerable to external loading, thus featuring low bending stiffness. This work aims to provide empirical evidence that the bending stiffness can be considerably increased by using fully actuated joint constructions, enabling left/right and up/down tip rotations with the minimum of two degrees of freedom (DOF), rather than conventional underactuated constructions enabling these rotations with more than two DOF. Material and methods: A steerable MIS instrument prototype with a fully actuated joint construction was compared to state-of-the-art underactuated steerable instruments in a number of tip deflection experiments. The tip deflections due to loading were measured by means of a universal testing machine in four bending scenarios: straight and bent over 20°, 40° and 60°. Results and conclusions: The experimental results support the claim that a fully actuated joint construction exhibits a significantly larger bending stiffness than an underactuated joint construction. Furthermore, it was shown that the underactuated instrument tips show a considerable difference between their neutral positions before and after loading, which could also be greatly minimised by full actuation.

Acknowledgements

The research of Filip Jelínek was performed within the framework of CTMM, the Center for Translational Molecular Medicine, project MUSIS (grant 03O-202). The research of Paul W. J. Henselmans was supported by Technology Foundation STW.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 344.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.