77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genotypic heterogeneity and molecular basis of 5-flucytosine resistance among Candida dubliniensis isolates recovered from clinical specimens in Kuwait

, , , &
Pages 244-251 | Received 21 Mar 2011, Accepted 11 Jun 2011, Published online: 06 Sep 2011
 

Abstract

There is a paucity of information about genotypic heterogeneity among Candida dubliniensis isolates recovered from different geographic regions. This study explored genotypic heterogeneity among 103 C. dubliniensis strains obtained over a six-year period from clinical specimens in Kuwait. Genotype assignment was based on amplification with genotype-specific primers and sequencing of rDNA. Susceptibility to 5-flucytosine was determined by means of the Etest. DNA sequencing of cytosine deaminase was performed to determine the molecular basis of resistance to 5-flucytosine. DNA sequencing of rDNA identified seven different genotypes, i.e., 68 (66%) isolates were found to belong to genotype 1, 25 to genotype 4, six to genotype 5 and one each to genotypes 6–9. Strains of genotype 2 or genotype 3 were not detected. All isolates of genotype 4 but none of other genotypes were resistant to 5-flucytosine and the resistant strains all contained S29L mutation. Isolates of all other genotypes contained wild-type codon 29 in cytosine deaminase. A simple, PCR-RFLP-based method has been developed to facilitate rapid detection of S29L mutation in cytosine deaminase. A noteworthy observation of our study is the identification of five new genotypes of C. dubliniensis isolates, recovered from oral/respiratory specimens from patients of Middle Eastern origin. Furthermore, all 5-flucytosine resistant C. dubliniensis isolates in Kuwait belonged to genotype 4 only.

Acknowledgements

This study was supported by Kuwait University Research Administration grant MI 01/08. Ethical approval for the study was granted by the Ethical Committee of the Faculty of Medicine, Kuwait University.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This paper was first published online on Early Online on 6 September 2011.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.