173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exposure of Aspergillus fumigatus to caspofungin results in the release, and de novo biosynthesis, of gliotoxin

, , &
Pages 121-127 | Received 12 Jan 2012, Accepted 21 Apr 2012, Published online: 16 Jan 2013
 

Abstract

Caspofungin is a member of the echinocandin class of antifungal agents that inhibit the synthesis of β 1,3 glucan thus disrupting fungal cell wall structure and function. Exposure of the Aspergillus fumigatus cultures to caspofungin (0.01, 0.1 or 1.0 μg/ml) resulted in a reduction in cell growth, but the production of the epipolythiodioxopiperazine toxin, gliotoxin, was comparable, or greater, in cultures exposed to caspofungin than untreated controls. Exposure of A. fumigatus hyphae to 1.0 μg/ml caspofungin for 4 h resulted in the release of amino acids (P = 0.01), protein (P = 0.002) and gliotoxin (P = 0.02). Cultures of A. fumigatus incubated in the presence of caspofungin for 4 or 24 h demonstrated enhanced gliotoxin release (P = 0.04 and 0.03, respectively) and biosynthesis (P = 0.04 and 0.03, respectively) compared to that by control cultures. The results presented here indicate that exposure of A. fumigatus to caspofungin results in increased cell permeability and an increase in the synthesis and release of gliotoxin. Since gliotoxin has well established immunosuppressive properties it is possible that exposure of A. fumigatus to caspofungin may potentiate the production of this toxin at the site of infection. Elevated gliotoxin biosynthesis may be an attempt by the fungus to restore the redox balance of the cell following exposure to the antifungal agent but the overall effect appears to be enhanced synthesis and release.

Acknowledgements

This work was supported with a scholarship to AE from The Department of Education, Government of Libya.

Declaration of interest: This work was conducted independently of any pharmaceutical company with interests in anti-fungal drug development or marketing. The authors report no conflicts of interest. The authors alone are responsible for the content and the writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.