104
Views
2
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Mesenchymal stromal cells inhibit graft-versus-host disease of mice in a dose-dependent manner

, , , , , , , , , & show all
Pages 361-370 | Received 11 Aug 2009, Accepted 20 Nov 2009, Published online: 18 Jan 2010
 

Abstract

Background aims. Graft-versus-host disease (GvHD) remains a major complication after allogeneic hematopoietic cell transplantation (HCT). Recent literature demonstrates a potential benefit of human mesenchymal stromal cells (MSC) for the treatment of refractory GvHD; however, the optimal dose remains uncertain. We set out to develop an animal model that can be used to study the effect of MSC on GvHD. Methods. A GvHD mouse model was established by transplanting C3H/he donor bone marrow (BM) cells and spleen cells into lethally irradiated BALB/c recipient mice. MSC were obtained from C3H/he mice and the C3H/10T1/2 murine MSC line. Results. The mRNA expression of Foxp3 in regional lymph nodes (LN) localized with T cells was markedly increased by the addition of C3H10T1/2 cells in a real-time polymerase chain reaction (PCR). Using a mixed lymphocyte reaction, we determined the optimal splenocyte proliferation inhibition dose (MSC:splenocyte ratios 1:2 and 1:1). Three different C3H10T1/2 cell doses (low, 0.5 × 106, intermediate, 1 × 106, and high, 2 × 106) with a consistent splenocyte dose (1 × 106) were evaluated for their therapeutic potential in an in vivo GvHD model. The clinical and histologic GvHD score and Kaplan–Meier survival rate were improved after MSC transplantation, and these results demonstrated a dose-dependent inhibition. Conclusions. We conclude that MSC inhibit GvHD in a dose-dependent manner in this mouse model and this model can be used to study the effects of MSC on GvHD.

Acknowledgments

This research was supported by a grant (08172 KFDA304) from the Korea Food and Drug Administration in 2008.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.