167
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells

, , &
Pages 637-657 | Received 05 Feb 2010, Accepted 17 May 2010, Published online: 07 Jul 2010
 

Abstract

Background aims. Ex vivo propagation of sparse populations of human mesenchymal stromal cells (hMSC) is critical for generating numbers sufficient for therapeutic applications. hMSC culture media have typically been supplemented with animal serum and, recently, human-sourced materials. However, these supplements are ill-defined and, thus, undesirable for clinical and research applications. Previously reported efforts to develop defined media for hMSC culture only resulted in slow or limited proliferation, and were unsuccessful in expanding these cells from primary cultures. Therefore a major step forward would be the identification of defined, serum-free culture conditions capable of supporting both the isolation and rapid expansion of hMSC. Methods. Using classical approaches of medium development, we were able to identify a set of growth and attachment factors that allowed the serum-free isolation and expansion of hMSC from bone marrow. Results. Heparin, selenium and platelet-derived growth factor (PDGF)-BB were found to be inhibitory for the growth of hMSC, whereas basic fibroblast growth factor (bFGF) was critical and worked synergistically with transforming growth factor (TGF)-β1 to allow significant cell expansion. Ascorbic acid, hydrocortisone and fetuin were also found to be important growth and attachment factors that, in conjunction with substrate-coating proteins, allowed the isolation of hMSC from primary culture and their subsequent expansion. Conclusions. We report a defined medium formulation (PPRF-msc6), consisting of key recombinant and serum-derived components, for the rapid isolation and expansion of hMSC in the absence of serum. This work represents an important step forward for achieving an ideal, completely defined synthetic medium composition for the safe use of hMSC in clinical settings.

Acknowledgments

We acknowledge the generous financial support of the Canadian Institutes of Health Research (CIHR), the Natural Science and Engineering Research Council of Canada (NSERC), the Canada Research Chairs (CRC) program and the Alberta Ingenuity Fund (AIF).

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.