69
Views
1
CrossRef citations to date
0
Altmetric
Original Papers

Growth factor and cytokine expression of human mesenchymal stromal cells is not altered in an in vitro model of tissue damage

, , , &
Pages 870-880 | Received 25 Feb 2010, Accepted 31 May 2010, Published online: 22 Jul 2010
 

Abstract

Background aims. The beneficial effect of human (h) mesenchymal stromal cell (MSC) transplantation in a variety of cell-based intervention strategies is widely believed to be because of paracrine mechanisms. The modification of hMSC cytokine and growth-factor expression patterns were studied following exposure to lipopolysaccharide (LPS) and tissue homogenates (representing tissue debris) from normal and pathologic tissues. Methods. Human bone marrow-derived MSC were stimulated with LPS or exposed to homogenate from normal or pathologic rat spinal cord or heart. The expression profiles of a number of cytokines and growth factors were investigated using quantitative reverse transcription (RT)-polymerase chain reaction (PCR) with human-specific primers. The effects of tissue homogenates on hMSC proliferation and migratory behavior were also investigated. Results. Stimulation of hMSC with LPS resulted in an up-regulation of interleukin (IL)-1β, IL-6 and IL-8. However, the pattern of up-regulation varied between donor samples. Furthermore, LPS treatment resulted in a donor-dependent alteration of growth factor expression. Induction of a shift in expression pattern was not observed following exposure to homogenates from either normal or pathologic tissues. Tissue homogenates did stimulate cell proliferation, but not migration. Conclusions. The hMSC expression pattern is apparently stable, even when cells are confronted by debris from different tissue types. However, treatment of hMSC with LPS is able to change the expression of cytokines and growth factors in a donor-dependent manner that may enhance their potential use in regenerative medicine.

Acknowledgments

This research was supported by grants from EC FP6 project RESCUE (LSHB-CT-2005-518233) and the Interdisciplinary Centre for Clinical Research ‘BIOMAT’ within the Faculty of Medicine at the RWTH Aachen University (TVB 111).

Disclosure of interests: the authors declare that they have no competing interests.

Log in via your institution

Log in to Taylor & Francis Online

There are no offers available at the current time.

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.