105
Views
7
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Long-Term Extremely Low-Frequency Magnetic Field on Geometric and Biomechanical Properties of Rats' Bone

, , , &
Pages 9-18 | Published online: 15 Mar 2010
 

Abstract

Bone is composed of a mineral matrix reinforced by a network of collagen that governs the biomechanical functions of the skeletal system in the body. The purpose of the study was to investigate the possible effect of extremely low-frequency magnetic field (ELF-MF) on geometric and biomechanical properties of rats' bone. In this study, 30 male Sprague-Dawley rats were used. The rats were divided into three groups: two experimental and one control sham. The first and second experimental group (n=10) were exposed to 100 μT and 500 μT-MF during 10 months, 2 h a day, respectively, and the third (sham) (n=10) group was treated like experimental group except ELF-MF exposure in methacrylate boxes. After ELF-MF and sham exposure, geometric and the biomechanical properties of rats' bone, such as cross-sectional area of the femoral shaft, length of the femur, cortical thickness of the femur, ultimate tensile strength (maximum load), displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone were determined. The geometric and biomechanical analyses showed that a significant decrease in rats exposed to 100 μT-MF in comparison to sham and 500 μT-MF exposed rats about the values of cross-sectional area of the femoral shaft (P<0.05). Maximum load increased in 100 μT-MF and 500 μT-MF exposed rats when compared to that of the sham rats (P<0.05). The cortical thickness of the femurs of MF-exposed rats (100 μT and 500 μT) were significantly decreased in comparison to that of sham groups' rats (P<0.05 and P<0.001). However, no significant differences were found in the other biomechanical endpoints between each other groups, such as: length of the femur, displacement, stiffness, energy absorption capacity, elastic modulus, and toughness of bone (P>0.05). These experiments demonstrated that 100 μT-MF and 500 μT-MF can affect biomechanical and geometrical properties of rats' bone.

Declaration of Interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.