256
Views
1
CrossRef citations to date
0
Altmetric
Original Article

The effects of fat layer on temperature distribution during microwave atrial fibrillation catheter ablation

, &
Pages 8-14 | Received 30 Mar 2014, Accepted 03 Aug 2014, Published online: 02 Sep 2014
 

Abstract

To investigate the effects of fat layer on the temperature distribution during microwave atrial fibrillation catheter ablation in the conditions of different ablation time; 3D finite element models (fat layer and no fat layer) were built, and temperature distribution was obtained based on coupled electromagnetic-thermal analysis at 2.45 GHz and 30 W of microwave power. Results shown: in the endocardial ablation, the existence of the fat layer did not affect the shape of the 50 °C contour before 30 s. The increase speed of depth became quite slowly in the model with fat layer after 30 s. When ablation depth needed fixed, there are no significant effect on effectively ablation depth whether fat layer over or not. However, the existence of fat layer makes the temperature lower in the myocardium, and maximum temperature point closer to the myocardium surface. What is more, in the model with fat layer, effective ablation reach lower maximum temperature and the shallower depth of 50 °C contour. But there are larger ablation axial length and transverse width. In this case, doctor should ensure safety of normal cardiac tissue around the target tissue. In the epicardial ablation, the existence of fat layer seriously affects result of the microwave ablation. The epicardial ablation needs more heating time to create lesion. But epicardial ablation can be better controlled in the shape of effective ablation area because of the slowly increase of target variables after the appearing of 50 °C contour. Doctor can choose endocardial or epicardial ablation in different case of clinic requirement.

Acknowledgments

The author thanks Prof. Nan for her favorable advice and kind guidance. Basic Research Foundation of Beijing University of Technology (Nan).

Declaration of interest

This research is supported by National Science Foundation of China (no. 31070754), Beijing Municipal Commission of Education Project Scientific and Technological Program (KM201410005028), and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions for three years (2013–2015) – Nan Qun.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,832.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.