98
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of analgesic active 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one on the antioxidant status, glucose utilization and lipid accumulation in some in vitro and ex vivo assays

, , , , , , , , , & show all
Pages 204-211 | Received 09 Sep 2013, Accepted 30 Dec 2013, Published online: 17 Jan 2014
 

Abstract

Purpose: Earlier we demonstrated that 3-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-dihydrofuran-2-one (LPP1) elevates nociceptive thresholds in the mouse model of diabetic neuropathic pain. Since drug-induced impairments of glucose and lipid metabolism and the oxidative stress might diminish benefits from analgesia achieved by analgesic drugs used in diabetic neuropathy, the effect of LPP1 on glucose utilization, lipid accumulation and its antioxidant and cytotoxic potential were assessed in some in vitro and ex vivo tests.

Methods: Total antioxidant capacity was evaluated spectrophotometrically using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method, whereas the activities of glutathione (GSH) peroxidase and reductase were measured using methods based on the oxidation of NADPH to NADP. The spectrophotometric method for the evaluation of GSH level in mouse brain tissue homogenates involved the oxidation of GSH by the sulfhydryl reagent 5,5′-dithio-bis(2-nitrobenzoic acid) (DTNB) to form a yellow derivative, 5′-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm. Cytotoxicity and glucose utilization were measured in hepatoma HepG2 cells and in 3T3-L1 adipocytes. Lipid accumulation was measured in 3T3-L1 cell lines.

Results: LPP1 had dose-dependent antioxidant properties in DPPH radical assay (14–22% versus control; p < 0.001). Its single administration caused an increase in GSH concentration in brain tissue homogenates of mice by 34% (versus control group; p < 0.05). LPP1 was not cytotoxic and it did not increase glucose utilization or lipid accumulation in cell cultures.

Conclusions: Previously demonstrated antinociceptive properties of LPP1 are accompanied by a lack of cytotoxicity. LPP1 does not impair glucose or lipid metabolism and is an antioxidant. All these properties might be advantageous for its use in diabetic neuropathy.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.