349
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Establishment of stable MRP1 knockdown by lentivirus-delivered shRNA in the mouse testis Sertoli TM4 cell line

, , , , , & show all
Pages 81-90 | Received 22 Aug 2014, Accepted 13 Nov 2014, Published online: 24 Feb 2015
 

Abstract

Sertoli cells around germ cells are considered a barrier that protects spermatogenesis from harmful influences. The transporter multidrug-resistance-associated protein 1 (MRP1) is a xenobiotic efflux pump that can export glutathione S-conjugated metabolites and xenobiotics from cells. In this study, the Mrp1 gene was stably knocked down in a mouse Sertoli cell line (TM4) using lentivirus vector-mediated RNA interference (RNAi) technology. Four shRNA interference sequences were chosen and designed to screen for the most effective shRNA in candidate cells. The results indicate that lentivirus vectors with high titres were generated and successfully transfected into TM4 cells with high efficiency. Puromycin was added to the culture medium to maintain constant selection during the establishment of the stable cell lines. The expression levels of Mrp1 mRNA and MRP1 protein in stably transfected TM4 cells were significantly lower than those in the control group. Importantly, the transport activity of MRP1 to Calcein and 5-carboxyseminaptharhodafluor (SNARF-1) were significantly reduced because of MRP1 silencing. Moreover, the silencing of the Mrp1 gene in the transfected TM4 cell lines remained highly stable for more than 6 months. These results suggest that the lentivirus-based RNAi stably knocks down the expression of the Mrp1 gene in the established TM4 cell line. This transfected TM4 cell line will provide a new and powerful tool to study the underlying mechanism of MRP1-mediated drug resistance and detoxication in the reproductive system.

Acknowledgements

The authors thank all members in Professor CH. Wang’s laboratory in Wuhan University for their valuable assistances and Guoxun Chen (Associate Professor) in the University of Tennessee at Knoxville for revision of the manuscript.

Declaration of interest

The authors declare that there are no conflicts of interest.

The Project was supported by The National Natural Science Foundation of China (No. 81172628), and the Fundamental Research Funds for the Central Universities (No. 2014305020201)

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.