297
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Riboflavin attenuates lipopolysaccharide-induced lung injury in rats

, , , , , , , , & show all
Pages 417-423 | Received 05 Jan 2015, Accepted 20 Apr 2015, Published online: 11 Sep 2015
 

Abstract

Riboflavin (vitamin B2) is an easily absorbed micronutrient with a key role in maintaining health in humans and animals. It is the central component of the cofactors flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) and is therefore required by all flavoproteins. Riboflavin also works as an antioxidant by scavenging free radicals. The present study was designed to evaluate the effects of riboflavin against acute lungs injury induced by the administration of a single intranasal dose (20 μg/rat) of lipopolysaccharides (LPS) in experimental rats. Administration of LPS resulted in marked increase in malondialdehyde (MDA) level (p < 0.01) and MPO activity (p < 0.001), whereas marked decrease in glutathione (GSH) content (p < 0.001), glutathione reductase (GR) (p < 0.001) and glutathione peroxidase (p < 0.01) activity. These changes were significantly (p < 0.001) improved by treatment with riboflavin in a dose-dependent manner (30 and 100 mg/kg, respectively). Riboflavin (100 mg/kg, p.o.) showed similar protective effects as dexamethasone (1 mg/kg, p.o.). Administration of LPS showed marked cellular changes including interstitial edema, hemorrhage, infiltration of PMNs, etc., which were reversed by riboflavin administration. Histopathological examinations showed normal morphological structures of lungs tissue in the control group. These biochemical and histopathological examination were appended with iNOS and CAT gene expression. The iNOS mRNA expression was increased significantly (p < 0.001) and levels of CAT mRNA expression was decreased significantly (p < 0.001) in the animals exposed to LPS, while treatment with riboflavin significantly (p < 0.01) improved expression of both gene. In conclusion, the present study clearly demonstrated that riboflavin caused a protective effect against LPS-induced ALI. These results suggest that riboflavin may be used to protect against toxic effect of LPS in lungs.

Acknowledgements

The authors acknowledge the Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University for its facilities (Project No. RGP-VPP-305).

Declaration of interest

The authors declare that there are no conflicts of interest.

The present work was funded by King Saud University, Deanship of Scientific Research, College of Pharmacy (Project No. RGP-VPP-305).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.