171
Views
18
CrossRef citations to date
0
Altmetric
Research Article

Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods

&
Pages 340-347 | Received 24 Dec 2015, Accepted 06 Mar 2016, Published online: 21 Apr 2016
 

Abstract

The gold nanorods (GNRs) are great potentials in imaging, therapy, biosensing, and many other commercial applications. However, GNRs interactions with human cells and potential health risks remain not well known. The present investigation aimed to evaluate the in vitro toxicity of 10 and 25 nm GNRs (10–50 μg/mL) following exposure for 48 h in human Hep G2 liver epithelial cells using 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), lactate dehydrogenase (LDH) leakage, glutathione (GSH) estimation, lipid peroxidation (TBARS), caspase-3 levels, and interleukin-8 (IL-8) release assays. Exposure of GNRs to cells results in decrease in cell viability and causes cell membrane damage through LDH leakage results in cytotoxicity. The IC50 (concentration required to inhibit 50% of cells) values of 10 nm GNRs, 25 nm GNRs, and quartz (toxic control)-treated cells were found to be 19.9, 26.8, and 36.35 μg/mL, suggesting the higher cytotoxicity of GNRs. The GNRs exposure to liver cells found in depleted GSH levels, increased lipid peroxidation, and increased caspase-3 levels leads to induction of oxidative stress. In addition, enhanced levels of IL-8 were found, a sign of inflammation. The 10 nm GNRs have shown significant toxicity against all biochemical assays when compare to 25 nm GNRs and quartz-treated cells. Finally, the data indicate that the concentration size-dependent in vitro toxicity of GNRs toward liver Hep G2 cells. The toxicity of GNRs may be due to cell membrane damage, induction of oxidative stress, and inflammatory mediator release. Further investigations are necessitated to elucidate the in vivo toxicity of GNRs.

Disclosure statement

The authors declare that there are no conflicts of interest.

Funding information

The authors are grateful to Basic Scientific Research (BSR) section, University Grants Commission (UGC), New Delhi, India for providing funding for the present research study.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.