212
Views
19
CrossRef citations to date
0
Altmetric
Review Article

New perspectives for the application of bioplastic materials in the biocontrol of Aspergillus flavus in corn

&
Pages 71-78 | Received 16 May 2011, Accepted 23 May 2011, Published online: 23 Jun 2011
 

Abstract

Mycotoxins are secondary metabolites produced by certain filamentous fungi that can contaminate a large variety of agricultural commodities before and after harvest. Among different mycotoxins, aflatoxins and especially aflatoxin B1 are of particular concern because they are potent natural carcinogens. Aflatoxin-producing fungi, mainly Aspergillus flavus and A. parasiticus, are ubiquitous, being commonly isolated from agricultural soil and crop debris. Although many aspects of the ecology of aflatoxin-producing fungi have been elucidated, control of aflatoxin contamination of agricultural crops remains a difficult task. Agronomical practices promoting general plant health have shown variable and more frequently limited success in preharvest control of aflatoxin contamination. Competitive replacement of indigenous toxigenic soil isolates is considered a more promising and effective approach. This biocontrol strategy is based on field application of a large number of propagules of nontoxigenic strains of A. flavus. Biocontrol strains are typically formulated as inoculated or spore-coated grain seeds. More recently, efforts to explore new approaches and technologies have resulted in the development of other practical solutions, including a bioplastic-based formulation. This formulation originally developed in 2008, consists of bioplastic granules entrapping spores of the nontoxigenic biocontrol strain, A. flavus NRRL 30797. Laboratory and field studies that have been conducted until now have clearly shown that granules of the starch-based bioplastic Mater-Bi® are effective in delivering this biocontrol strain. In addition to having a satisfactory shelf life, the granules are easy to prepare, handle, and apply to agricultural fields. More importantly, this novel bioplastic formulation is capable of efficiently reducing aflatoxin contamination of corn. The bioplastic Mater-Bi® can also have other applications. For instance, rods or granules prepared using a slightly modified Mater-Bi® bioplastic matrix can be used to selectively isolate A. flavus from soil and corn kernels.

Acknowledgements

The authors want to express their deep gratitude to Dr. Robert M. Zablotowicz for his valuable contribution in the development of the bioplastic formulation described here in this manuscript. The authors greatly appreciate his enthusiasm and support with this project.

Declaration of interest

The authors declared no conflict of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,628.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.