384
Views
52
CrossRef citations to date
0
Altmetric
Original Article

Microscopic investigation of single-wall carbon nanotube uptake by Daphnia magna

, , , , &
Pages 2-10 | Received 24 Sep 2012, Accepted 18 Sep 2013, Published online: 18 Dec 2013
 

Abstract

The objectives of this study were to determine the extent of absorption of functionalized single-wall carbon nanotubes (SWCNTs) across the gut epithelial cells in Daphnia magna. Several microscopic techniques were utilized, including micro-Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM) and selective area diffraction (SAD). In an effort to examine the variation in uptake due to surface properties, four groups of differently functionalized SWCNTs were used: hydroxylated (OH-SWCNTs), silicon dioxide (SiO2-SWCNTs), poly aminobenzenesulfonic acid (PABS-SWCNTs) and polyethylene glycol (PEG-SWCNTs). Raman spectroscopy was able to detect OH-SWCNTs within the gut, but lacked the spatial resolution that is needed to identify lower concentrations of SWCNTs that may have been absorbed by body tissues. Initially, low-magnification imaging of exposed D. magna sections in the TEM revealed several features, which suggested absorption of SWCNTs. However, subsequent analysis with additional techniques (HRTEM, X-ray energy-dispersive spectroscopy and SAD) indicated that these features were either artifacts produced via the specimen staining process or consisted of non-graphitic, organic structures. This latter observation emphasizes the inherent difficulty in resolving SWCNTs embedded within a complex, organic matrix, as well as the care with which imaging results must be interpreted and supplemented with other, more analytical techniques.

Declaration of interest

This work was funded by the U.S. Environmental Protection Agency’s STAR program grant numbers R833886 and R834092.

Certain commercial equipment or materials are identified in this article in order to specify adequately the experimental procedure. Such identification does neither imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Supplementary material available online

Supplementary Figure 1

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.