865
Views
95
CrossRef citations to date
0
Altmetric
Original Article

Acute exposure to ZnO nanoparticles induces autophagic immune cell death

, , , , , , , , , & show all
Pages 737-748 | Received 29 May 2014, Accepted 30 Sep 2014, Published online: 07 Nov 2014
 

Abstract

The increasing risk of incidental exposure to nanomaterials has led to mounting concerns regarding nanotoxicity. Zinc oxide nanoparticles (ZnO NPs) are produced in large quantities and have come under scrutiny due to their capacity to cause cytotoxicity in vitro and potential to cause harm in vivo. Recent evidence has indicated that ZnO NPs promote autophagy in cells; however, the signaling pathways and the role of ion release inducing toxicity remain unclear. In this study, we report that ZnO NPs are immunotoxic to primary and immortalized immune cells. Importantly, such immunotoxicity is observed in mice in vivo, since death of splenocytes is seen after intranasal exposure to ZnO NPs. We determined that ZnO NPs release free Zn2+ that can be taken up by immune cells, resulting in cell death. Inhibiting free Zn2+ ions in solution with EDTA or their uptake with CaCl2 abrogates ZnO NP-induced cell death. ZnO NP-mediated immune cell death was associated with increased levels of intracellular reactive oxygen species (ROS). ZnO NP death was not due to apoptosis, necroptosis or pyroptosis. Exposure of immune cells to ZnO NPs resulted in autophagic death and increased levels of LC3A, an essential component of autophagic vacuoles. Accordingly, ZnO NP-mediated upregulation of LC3A and induction of immune cell death were inhibited by blocking autophagy and ROS production. We conclude that release of Zn2+ from ZnO NPs triggers the production of excessive intracellular ROS, resulting in autophagic death of immune cells. Our findings suggest that exposure to ZnO NPs has the potential to impact host immunity.

Acknowledgements

The authors would like to thank A. Bastian for her assistance with TEM imaging.

Declaration of interest

The authors declare that they have no conflict of interest. Research funding was provided by the Department of Microbiology and Immunology, Drexel University College of Medicine. Stipend funding to B.M.J. was provided by Drexel University School of Biomedical Engineering, Sciences, & Health Systems.

Supplementary material available online

Supplementary figures 1 and 2.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.