470
Views
22
CrossRef citations to date
0
Altmetric
Original Article

In vitro screening of metal oxide nanoparticles for effects on neural function using cortical networks on microelectrode arrays

, , , , , & show all
Pages 619-628 | Received 08 Aug 2014, Accepted 08 Oct 2015, Published online: 23 Nov 2015
 

Abstract

Nanoparticles (NPs) may translocate to the brain following inhalation or oral exposures, yet higher throughput methods to screen NPs for potential neurotoxicity are lacking. The present study examined effects of 5 CeO2 (5– 1288 nm), and 4 TiO2 (6–142 nm) NPs and microparticles (MP) on network function in primary cultures of rat cortex on 12 well microelectrode array (MEA) plates. Particles were without cytotoxicity at concentrations ≤50 µg/ml. After recording 1 h of baseline activity prior to particle (3–50 µg/ml) exposure, changes in the total number of spikes (TS) and # of active electrodes (#AEs) were assessed 1, 24, and 48 h later. Following the 48 h recording, the response to a challenge with the GABAA antagonist bicuculline (BIC; 25 µM) was assessed. In all, particles effects were subtle, but 69 nm CeO2 and 25 nm TiO2 NPs caused concentration-related decreases in TS following 1 h exposure. At 48 h, 5 and 69 nm CeO2 and 25 and 31 nm TiO2 decreased #AE, while the two MPs increased #AEs. Following BIC, only 31 nm TiO2 produced concentration-related decreases in #AEs, while 1288 nm CeO2 caused concentration-related increases in both TS and #AE. The results indicate that some metal oxide particles cause subtle concentration-related changes in spontaneous and/or GABAA receptor-mediated neuronal activity in vitro at times when cytotoxicity is absent, and that MEAs can be used to screen and prioritize nanoparticles for neurotoxicity hazard.

Acknowledgements

The authors thank Ms Theresa Freudenrich and Ms Kathleen Wallace of the US EPA for their outstanding tissue culture support, and Dr Kim Rogers (EPA) for assistance with TEM microscopy. We also greatly appreciate the helpful comments on this manuscript from Dr William Boyes (US EPA) and Dr Alexandra Voss (Neuroproof GmbH).

Declaration of interest

This work has been funded by the U.S. Environmental Protection Agency. This document has been reviewed by the National Health and Environmental Effects Research Laboratory and approved for publication. Approval does not signify that the contents reflect the views of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Diana Hall was supported by student services contracts #EP-11-D-000392 (JDS) and #EP-13-D-000108.

Jayna NR Ortenzio was supported by Oak Ridge Institute for Science and Education Fellowship.

Supplementary material available online.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 547.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.