140
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Formulation and Shelf Life Stability of Water-Borne Lecithin Nanoparticles for Potential Application in Dietary Supplements Field

Pages 211-222 | Received 01 Feb 2012, Accepted 28 Jun 2012, Published online: 14 Aug 2012
 

ABSTRACT

The objective of the present investigation is to formulate commercial soybean lecithin as nanoparticles in solvent-free aqueous system for potential supplementary applications. A mechanical method, which involved two major steps, was used for that purpose. First, lecithin submicron particles (∼0.5 μm) have been prepared by gradual hydration of lecithin powder using mechanical agitation. Finally, the size of these particles was further reduced to < 100 nm by using high-pressure microfluidization. The physical stability (appearance, particle size distribution, ζ-potential) and the chemical stability (lipid oxidation) of the dispersions carrying lecithin nanoparticles were assessed every 15 days during the 3-month shelf life period at two different temperatures. Results showed that the final particle size of lecithin in the freshly prepared aqueous dispersion was 79.8 ± 1.0 nm and the amount of peroxide detected was 3.5 ± 0.2 meq/kg lipid. At the end of the storage period, dispersions stored at 4°C exhibited physical and chemical stability as evident from the translucent appearance, the small change in particle size (84.1 ± 1.3 nm), and the small amount of generated peroxides (4.1 ± 0.2 meq/kg lipid). On the other hand, dispersions stored at 25°C were physically stable up to 60 days. Over that period, samples became turbid and the particle size increased to 145.0 ± 1.7 nm with a bimodal distribution pattern. This behavior was due to phospholipids (PLs) degradation and hydrolysis under acidic conditions, which proceeds faster at a relatively high temperature (25°C) than at (4°C). The outcome of this investigation may help in developing water-based dispersions carrying lecithin nanoparticles for dietary supplement of PLs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 213.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.