192
Views
11
CrossRef citations to date
0
Altmetric
RESEARCH PAPERS

Velocity distribution and wake-law in gradually decelerating flows

Pages 177-184 | Received 17 Jun 2008, Published online: 26 Apr 2010
 

Abstract

An attempt was made to explain deviations of measured Reynolds-shear stresses from the linear distribution and measured velocity ū from the log-law in decelerating flows. Starting from the Reynolds equations, this investigation shows that the momentum flux ρū driven by a nonzero wall-normal velocity plays an important role for these deviations. The term ρū , similar to the Reynolds stress, should not be neglected in the momentum equation, therefore. Theoretical and experimental studies evidence the existence of an upward velocity component in decelerating flows. It was confirmed that the classical log-law is applicable if and only if the wall-normal velocity is zero, and the wake-function is caused by an up-flow. The relation between the wake-strength and the wall-normal velocity was also established. The model developed produces reasonable agreement with measured velocity profiles available in the literature.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.