62
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Nonlinear colony extension of Sclerotinia minor and S. sclerotiorum

, &
Pages 902-910 | Accepted 08 Aug 2008, Published online: 20 Jan 2017
 

Abstract

Fungal colonies initially extend exponentially and reach a constant linear extension rate determined solely by their growth in the peripheral zone. However the radial extension rates of Sclerotinia sclerotiorum and S. minor accelerate over time on PDA. Experiments were conducted to analyze the variable extension rates of the two Sclerotinia species and compare them with those of Verticillium dahliae and Cladosporium sp. In addition, the effects of starter disk size, disk position in the parent colony, the age of the parent colony, the concentration of potato dextrose broth and of incubation temperature also were determined. While the growth of Cladosporium sp. and V. dahliae followed established linear trends, the radial extension of S. sclerotiorum and S. minor colonies continuously accelerated over time until they reached the edge of the (150 mm diam) Petri dish. A polynomial model fitted the radial extension of colonies of Sclerotinia spp. Furthermore the accelerating colony extension rate was partly due to increasing colony radius. The rates of extension from mycelial disks transferred from the parental colony were positively correlated with the radius of the mycelial disks transferred. The rates of extension also were dependent on where the transferred disks were taken from parent colonies and the age and radius of the parent colony. On potato dextrose agar medium the extension rates of colonies of S. sclerotiorum and S. minor also were affected by broth concentration and temperature. With increasing nutrient concentration colony extension rates increased and were highest at 25 C. This study revealed a novel pattern of radial growth for Sclerotinia spp. that diverged from the established growth patterns of fungal colonies. Knowledge of the differences in growth behavior may be exploited in the laboratory studies on fungal competition and hyperparasitism and potentially in disease control strategies.

We thank Dr Steve Klosterman at USDA-ARS, Salinas, California, for his presubmission review of the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.