460
Views
66
CrossRef citations to date
0
Altmetric
Original Articles

The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age

&
Pages 599-611 | Accepted 11 Mar 2009, Published online: 20 Jan 2017
 

Abstract

The diversity of arbuscular mycorrhizal fungi (AMF) in 10 Oregon vineyards was assessed by examining spores in soil and amplifying mycorrhizal DNA from roots. Seventeen spore morphotypes were found in soil, including seven species in the Acaulosporaceae. Eighteen phylotypes were amplified from grape roots with AM1 and NS31 primers, and clones were dominated by Glomus spp. (> 99%). A few clones (< 1%) representing a single phylotype within Gigasporaceae, and a single clone within Archaeosporaceae were amplified from roots with AM1-NS31 primers. A separate experiment employing known proportions of grape roots colonized by Glomus intraradices or by Gigaspora rosea showed that fungi within Gigasporaceae might be underrepresented in clone abundance when Glomus spp. co-occur in roots. No clones representing fungi within the Acaulosporaceae were amplified from vineyards, although specific fungi within Acaulosporaceae were shown to colonize Pinot noir roots in sterilized soil and were amplified from these roots. Four Glomus phylotypes, including G. intraradices, were found in roots from all 10 vineyards, and these fungi accounted for 81% of clones. AMF phylotypes amplified from roots did not change during the growing season, although six phylotypes varied with soil type. The presence of three phylotypes was affected by vineyard age, and phylotype richness appeared to decline as vineyard age increased beyond 20 y. PCA analysis supported the hypothesis that the AMF community is different in red-hill soils than in valley soils and indicated certain phylotypes might be associated with lower soil and vine nutrient status. However, the changes in the AMF community in grape roots across vineyards were subtle because most root samples were dominated by the same three or four phylotypes. A separate analysis using primers to amplify AMF from the Archeasporaceae/Paraglomeraceae showed most root samples also were colonized by at least one Paraglomus or Archaeospora phylotype.

We kindly thank Thomas McGeary for assistance in collecting and processing soil samples, Joyce Spain for help in identifying AMF spores from soil, Dr Gi-Ho Sung for performing the maximum likelihood analysis and Dr Joey Spatafora for advice regarding phylogenetic analysis and interpretation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.