191
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores

, &
Pages 1497-1509 | Received 13 Jan 2010, Accepted 12 Mar 2010, Published online: 20 Jan 2017
 

Abstract

In a phylogenetic study of arbuscular mycorrhizal fungal species in Acaulospora (Acaulosporaceae, Glomeromycota) we discovered that species classified in genus Kuklospora, a supposed sister clade of Acaulospora, did not partition as a monophyletic clade. Species in these two genera can be distinguished only by the position of the spore relative to a precursor structure, the sporiferous saccule, as either within (entrophosporoid) or laterally (acaulosporoid) on the saccule subtending hypha. Subsequent spore differentiation follows identical patterns and organization. Molecular phylogeny reconstructed from nrLSU gene sequences, together with developmental data, support the hypothesis that the entrophosporoid mode of spore formation evolved many times and thus represents a convergent trait of little phylogenetic significance. Therefore genus Kuklospora is rejected as a valid monophyletic group and it is integrated taxonomically into genus Acaulospora. Thus Acaulospora colombiana and Acaulospora kentinensis are erected as new combinations (formerly Kuklospora colombiana and Kuklospora kentinensis). Mode of spore formation is demoted from a genus-specific character to one that is included with other traits to define Acaulospora species. In addition we describe a new AM fungal species, Acaulospora colliculosa (Acaulosporaceae), that originated from a tallgrass prairie in North America. Field-collected spores of A. colliculosa are small (<100 μm diam), hyaline or subhyaline to pale yellow and form via entrophosporoid development based on structure and organization of cicatrices and attached hyphae. Each spore consists of a bilayered spore wall and two bilayered inner walls. A germination orb likely forms after the completion of spore development to initiate germination, but this structure was not observed. A character distinguishing A. colliculosa from other Acaulospora species is hyaline to subhyaline hemispherical protuberances on the surface of the outer spore wall layer. A phylogeny reconstructed from partial nrLSU gene sequences unambiguously placed A. colliculosa in the Acaulospora clade.

We thank Dr Barry Stein and the Indiana Molecular Biology Institute, Indiana University, for assistance with SEM imaging and Dr Gerald Gastony for his expert help with a Latin description. This study was financially supported by the U.S. National Science Foundation to JDB (DEB-0616891) and JBM (DEB-0649341 and DBI-0650735). WK also acknowledges financial support from the DPST program from the Royal Thai Government and Indiana University’s Floyd Fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.