475
Views
135
CrossRef citations to date
0
Altmetric
Original Articles

Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus

&
Pages 731-740 | Received 26 Oct 2010, Accepted 21 Dec 2010, Published online: 20 Jan 2017
 

Abstract

Regions of rDNA are commonly used to infer phylogenetic relationships among fungal species and as DNA barcodes for identification. These regions occur in large tandem arrays, and concerted evolution is believed to reduce intragenomic variation among copies within these arrays, although some variation still might exist. Phylogenetic studies typically use consensus sequencing, which effectively conceals most intragenomic variation, but cloned sequences containing intragenomic variation are becoming prevalent in DNA databases. To understand effects of using cloned rDNA sequences in phylogenetic analyses we amplified and cloned the ITS region from pure cultures of six Laetiporus species and one Wolfiporia species (Basidiomycota, Polyporales). An average of 66 clones were selected randomly and sequenced from 21 cultures, producing a total of 1399 interpretable sequences. Significant variation (≥ 5% variation in sequence similarity) was observed among ITS copies within six cultures from three species clades (L. cincinnatus, L. sp. clade J, and Wolfiporia dilatohypha) and phylogenetic analyses with the cloned sequences produced different trees relative to analyses with consensus sequences. Cloned sequences from L. cincinnatus fell into more than one species clade and numerous cloned L. cincinnatus sequences fell into entirely new clades, which if analyzed on their own most likely would be recognized as “undescribed” or “novel” taxa. The use of a 95% cut off for defining operational taxonomic units (OTUs) produced seven Laetiporus OTUs with consensus ITS sequences and 20 OTUs with cloned ITS sequences. The use of cloned rDNA sequences might be problematic in fungal phylogenetic analyses, as well as in fungal bar-coding initiatives and efforts to detect fungal pathogens in environmental samples.

The authors thank Kyah Norton (CFMR) for her assistance with DNA sequencing and Dr Beatriz Ortiz-Santana (CFMR) for providing helpful comments on the draft manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.