1,073
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

First comprehensive phylogenetic analysis of the genus Erysiphe (Erysiphales, Erysiphaceae) I. The Microsphaera lineage

, , , &
Pages 475-489 | Received 13 Jan 2015, Accepted 12 Feb 2015, Published online: 20 Jan 2017
 

Abstract

The genus Erysiphe (including powdery mildew fungi only known as anamorph, Pseudoidium) is the largest genus in the Erysiphaceae and contains more than 50% of all species in this family. Little is known about the phylogenetic structure of this genus. We conducted a comprehensive phylogenetic analysis of the Microsphaera-lineage, a monophyletic group including species of sects. Microsphaera and Erysiphe, using 401 sequences of nuc ITS1-5.8S-ITS2 and the 28S rDNA regions. This analysis gave many small clades delimited by the host plant genus or family. We identified two deep branches, albeit with moderate bootstrap supports, that divided the 401 sequences into three large groups. In addition, we identified four large clades consisting of homogeneous sequences of powdery mildews from a wide range of host plants beyond family level, namely, the E. aquilegiae clade, the E. alphitoides clade, the E. quercicola clade, and the E. trifoliorum s. lat. clade. Isolates from herbaceous plants were mostly situated in the E. aquilegiae clade and in Group III that was located at the most derived position of the Microsphaera-lineage. On the other hand, the basal part of the Microsphaera-lineage was occupied by isolates from woody plants except for E. glycines that was used as an outgroup taxon. This supports our previous hypothesis that tree-parasitic powdery mildews are phylogenetically primitive in the Erysiphaceae in general, and host-shift from trees to herbs occurred many times independently during the evolution of powdery mildews. Molecular clock analyses suggested that the divergence of the Microsphaera-lineage began ca. 20 million years ago in the Miocene Epoch of the Neogene Period.

Acknowledgments

We thank Dr Maria Havrylenko for kindly providing specimens. We also thank anonymous reviewers for helpful comments on previous versions of manuscript. This work was financially supported in part by a Grant-in-Aid for Scientific Research (No. 23580061) from the Japan Society for the Promotion of Science, a grant from the Institute for Fermentation, Osaka, Japan, to ST. The support of a visiting professorship (PD-021/2014) of the Hungarian Academy of Sciences (MTA), awarded to ST, also is acknowledged.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.