303
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Characterization of a new chytrid species parasitic on the dinoflagellate, Peridinium gatunense

, , &
Pages 731-743 | Received 20 Jul 2015, Accepted 15 Dec 2015, Published online: 20 Jan 2017
 

Abstract

Only a few chytrid fungi have been reported as parasites of dinoflagellates. Among these reports, chytrids are periodically observed growing on the dinoflagellate, Peridinium gatunense, in Lake Kinneret (Sea of Galilee), Israel. Because of the distinctive roles of parasitic chytrid fungi in decreasing phytoplankton populations and in transforming inedible algae into chytrid biomass which zooplankton grazers can eat, characterizing dinoflagellate parasites contributes to our understanding of the sustainability of this important water resource. An undescribed chytrid parasite of P. gatunense from Lake Kinneret has recently been brought into pure culture (KLL_TL-060613), facilitating exploration of its infection process. To evaluate the ability of this chytrid to affect host populations, we determined the effect of: (1) temperature and light (or dark) on prevalence of infection and (2) host growth phase and parasite:host ratio on percentage of infection. The greatest amplification in host infection occurred in cultures grown in the dark at 25 C. The percentage of host cells infected increased as the availability of host cells compared to parasite cells increased. These results demonstrate that environmental factors influence the chytrid’s potential to affect Peridinium gatunense populations. Because this chytrid had not been described taxonomically, we characterized its thallus morphology, development, zoospore ultrastructure and phylogenetic relationships. Zoospore ultrastructure was compatible with the Group II type zoospore characteristic of the family Chytridiaceae in the Chytridiales. Consistent with this observation, phylogenetic analyses of nuc 28S rDNA D1-D3 domains (28S) placed the chytrid in a clade among described taxa in the Chytridiaceae. Because thallus morphology was distinct from these other taxa, as well as other described parasites of dinoflagellates, this chytrid is described as a new genus and species, Dinochytrium kinnereticum.

Acknowledgments

This study was supported by the National Science Foundation through DEB-00949305 to MJP, by the Israel Ministry of Science Technology and Space through grant 3-8706 to AS. TL was supported in part by a scholarship from Israel Oceanographic & Limnological Research (IOLR)-Yohai Ben-Nun fund. We express our appreciation to Dr. Joyce Longcore for cultures, Dr. Kim Lackey for technical assistance with scanning electron microscopy and Dr. Shaun Pennycook for nomenclatural evaluation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.