17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, Density Functional Theory and Kinetic Studies of Aminopyridine Based α-glucosidase Inhibitors

, , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1757-1772 | Received 03 May 2023, Accepted 29 Aug 2023, Published online: 16 Oct 2023
 

Abstract

Aims: The current study aimed to develop new thiourea derivatives as potential α-glucosidase inhibitors for the management of hyperglycemia in patients of Type 2 diabetes, with a focus on identifying safer and more effective antidiabetic agents. Materials & methods: New thiourea derivatives (1–16) were synthesized through single-step chemical transformation and evaluated for in vitro α-glucosidase inhibition. Kinetic studies identified the mode of inhibition, free energy and type of interactions were analyzed through density functional theory and molecular docking. Results & conclusion: Compound 5 was identified as the most potent, noncompetitive and noncytotoxic inhibitor of α-glucosidase enzyme with a half-maximal inhibitory concentration of 24.62 ± 0.94 μM. Computational studies reinforce experimental results, demonstrating significant enzyme interactions via hydrophobic and π–π stacking forces.

Graphical Abstract

Supplementary data

To view the supplementary data that accompany this paper please visit the journal website at:www.tandfonline.com/doi/full/10.2217/epi-2016-0184

Acknowledgments

The authors thank Kiran Fida, who is in charge of the cell culture facility, for conducting the cytotoxicity assay.

Financial disclosure

The authors acknowledge the financial support of the International Foundation for Science to H Siddiqui (grant no. I-1-F-5674-2) under the individual research grant program. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Competing interests disclosure

The authors have no competing interests or relevant affiliations with any organization or entity with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

Writing disclosure

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.