67
Views
0
CrossRef citations to date
0
Altmetric
Review

Potential Implications of Nanoparticle Characterization on In Vitro and In Vivo Gene Delivery

Pages 1347-1356 | Published online: 23 Nov 2012
 

Abstract

Nanoparticles are rapidly emerging as therapeutic delivery vectors defined by size-dependent properties. They offer several advantages over the traditional drug-delivery systems and medical diagnostics but also pose considerable challenges for systemic applications. Gene delivery is one of the important applications of nanotechnology. Usually, the nanoparticles employed for gene delivery are either formed by condensation of DNA with preformed cationic polymers or by polymerization of monomeric units thereby entrapping DNA in it. The physicochemical properties such as size, shape, surface morphology have been found to have significant influence on the gene-delivery efficacy of nanoparticles. Furthermore, when administered in vitro and in vivo, the efficiency of nanoparticles depends on a wide variety of other parameters, that is, transfection conditions, time of exposure, cell type and so forth. In this review, the potential role of characterization of nanoparticles physicochemical properties on the in vitro and in vivo gene delivery efficacy of nanoparticles is discussed.

Acknowledgements

The author gratefully acknowledges R Ranjan (IRIC, University of Montreal, Canada) for helping with literature access.

Financial & competing interests disclosure

The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 351.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.