3,081
Views
59
CrossRef citations to date
0
Altmetric
REVIEW

Trial watch: Dendritic cell-based anticancer therapy

, , , , , , , , , , , , & show all
Article: e963424 | Received 04 Sep 2014, Accepted 05 Sep 2014, Published online: 29 Oct 2014

Abstract

The use of patient-derived dendritic cells (DCs) as a means to elicit therapeutically relevant immune responses in cancer patients has been extensively investigated throughout the past decade. In this context, DCs are generally expanded, exposed to autologous tumor cell lysates or loaded with specific tumor-associated antigens (TAAs), and then reintroduced into patients, often in combination with one or more immunostimulatory agents. As an alternative, TAAs are targeted to DCs in vivo by means of monoclonal antibodies, carbohydrate moieties or viral vectors specific for DC receptors. All these approaches have been shown to (re)activate tumor-specific immune responses in mice, often mediating robust therapeutic effects. In 2010, the first DC-based preparation (sipuleucel-T, also known as Provenge®) has been approved by the US Food and Drug Administration (FDA) for use in humans. Reflecting the central position occupied by DCs in the regulation of immunological tolerance and adaptive immunity, the interest in harnessing them for the development of novel immunotherapeutic anticancer regimens remains high. Here, we summarize recent advances in the preclinical and clinical development of DC-based anticancer therapeutics.

Introduction

The term “dendritic cells” (DCs) is generally employed to indicate a relatively heterogeneous and ubiquitous population of myeloid cells that (1) often, but not always, are characterized by a peculiar, tree-like morphology, and (2) tend to accumulate at sites of intense antigenic challenge (i.e., lymphoid organs, mucosal surfaces, the skin).Citation1-3 First discovered in 1973 by the late Nobel prize winner Ralph Steinman,Citation4-7 DCs have been the focus of an extraordinary intense wave of investigation over the last three decades, resulting in the increasingly precise characterization of their unique phenotypic and functional profile.Citation8-24 It is now clear that DCs occupy a critical position at the interface between innate and adaptive immunity. Accordingly, numeric of functional alterations in the DC network have been shown to contribute to the pathophysiology of several human diseases involving an immunological component, including a wide panel of infective, inflammatory, autoimmune, and allergic conditions.Citation2,25-27

Upon differentiation from common myeloid bone marrow progenitors, DCs migrate to tissues in an immature state. This implies that (1) they efficiently engulf extracellular material but secrete limited amounts of cytokines/chemokines, (2) they retain MHC Class II molecules within late endosomes, (3) they express a peculiar set of chemokine receptors; and (4) they bear low amounts of co-stimulatory molecules such as CD40, CD70, CD86, and tumor necrosis factor (ligand) superfamily, member 4 (TNFSF4, best known as OX40L) on the cell surface.Citation28-30 Functionally-speaking, immature DCs (iDCs) are efficient inducers of immunological tolerance, mostly owing to their ability to promote the demise of antigen-specific T-cells (a process commonly known as clonal deletion) as well as the expansion of immunosuppressive CD4+CD25+FOXP3+ regulatory T cells (Tregs).Citation31-33

In response to various cues of both microbial and endogenous origin,Citation1,8,28,34-36 iDCs undergo a significant functional shift as they mature.Citation3,37-41 The ability of mature DCs (mDCs) to take up extracellular material is limited.Citation3,28 Moreover, mDCs (1) bear MHC Class II molecules as well as elevated amounts of CD40, CD70, CD86, and OX40L on the cell surface; (2) express chemokine receptors that allow them to efficiently migrate to lymph nodes, such as chemokine (C-C motif) receptor 7 (CCR7); and (3) secrete increased quantities of cytokines and chemokines.Citation3,28 Thus, mDCs acquire a robust capacity to elicit adaptive immune responses, of both the cellular and humoral type.Citation42-45

Importantly, not all DCs share the same morphological, phenotypic and functional properties.Citation13,46-51 Thus, while some DC subsets – such as CD14+ dermal DCs – promote humoral immunity, others – such as epidermal Langerhans cells – preferentially stimulate CD8+ T-cell responses.Citation13,52-54 Two peculiar types of DCs are murine CD8α+ DCs (corresponding to human CD141+ DCs), which are particularly efficient at cross-presentation (i.e., at presenting on MHC Class I molecules extracellular antigens),Citation55-60 and plasmacytoid DCs (pDCs), which are unique in that they morphologically resemble plasma cells and in that they respond to microbial stimuli by secreting elevated levels of type I interferon (IFN).Citation61-63 Nonetheless, CD123+ pDCs activated by CpG oligodeoxynucleotides favor the expansion of CD4+CD25+FOXP3+ Tregs, hence mediating robust immunosuppressive effects.Citation64

DCs have a significant impact on oncogenesis, tumor progression and response to therapy.Citation35,65-68 This has been demonstrated not only in various preclinical tumor models involving alterations in the abundance or functional profile of precise DC subsets,Citation35,69-77 but also in a plethora of clinical studies,Citation78 correlating the intratumoral levels of DCs at large or specific DC subpopulations to improvedCitation79-99 or worsenedCitation79,100-105 disease outcome.

Throughout the past decade, consistent human and economic resources have been invested in the development of strategies to harness the robust immunomodulatory potential of DCs for the treatment of clinically relevant conditions encompassing infectious, autoimmune, asthmatic, and neoplastic disorders.Citation2,12,26,79,106-112 The main DC-based anticancer interventions developed so far, each of which is associated with unique advantages and drawbacks,Citation79,113,114 involve: (1) untreated DCs or DCs optionally exposed to activating stimuli;Citation115-121 (2) DCs exposed ex vivo to preparations enriched in one or more TAAs;Citation122-173 (3) strategies that allow for the loading of DCs with TAAs in vivo;Citation9,174-186 and (4) DC-derived exosomes.Citation187-190 Ex vivo, the loading of DCs with TAAs can be achieved (1) by co-culturing iDCs with autologous tumor cell lysatesCitation122-131,191-194 or recombinant TAAs;Citation132-139 (2) by transfecting DCs with TAA-coding vectors, TAA-coding RNAs or bulk RNA isolated from neoplastic cells;Citation140-165,195-197 and (3) by generating so-called “dendritomes," i.e., fusions between DCs and inactivated cancer cells.Citation129-131,166-173,198 In vivo, TAAs can be selectively delivered to DCs if (1) fused to monoclonal antibodies, polypeptides or carbohydrate moieties that selectively target receptors expressed by DCs, such as mannose receptor, C type 1 (MRC1), CD209 (best known as DC-SIGN), and lymphocyte antigen 75 (LY75, best known as DEC-205),Citation9,174-179,181,182,184,199 or glycolipids that are abundant on the DC surface, such as the glycosphingolipid globotriaosylceramide (Gb3);Citation200,201 (2) encapsulated in DC-targeting immunoliposomes,Citation202-204 or (3) encoded in DC-targeting vectors.Citation205-208 Reflecting the potent tolerogenic functions of iDCs,Citation175,176 the efficiency of therapeutic strategies targeting DCs in vivo critically relies on the co-administration of adequate stimuli that promote DC maturation, including Toll-like receptor (TLR) agonists and immunostimulatory cytokines.Citation209-211 Moreover, the immune responses elicited by such approaches vary in terms of polarization and functional features (i.e., T-cell phenotype, cytotoxic activity, secretory functions, and homing properties) depending not only on the specific DC subset that is targeted, but also on the DC receptor that is harnessed to this aim.Citation16,212-214

Here, we summarize recent advances in the development of DC-based interventions for oncological indications, discussing the results of studies that have been released and clinical trials that have been initiated after the publication of our latest Trial Watch dealing with this topic.Citation215 Of note, only one cellular product involving DCs is currently approved for use in humans, sipuleucel-T (also known as Provenge®). Sipuleucel-T has been licensed by the US FDA for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer as early as in 2010.Citation216-219

Literature Update

During the last 13 mo, the results of no less than 43 clinical trials investigating the safety and efficacy of DC-based therapeutic interventions in cancer patients have been published in the peer-reviewed scientific literature (source http://www.ncbi.nlm.nih.gov/pubmed). A large fraction of these studies (24) involved autologous DCs exposed ex vivo to tumor cell lysates, TAAs or peptide thereof.Citation220-243 In addition, 8 of these trials were based on DCs transfected with bulk tumor cell RNA or TAA-coding RNA,Citation244-251 5 on autologous DCs not exposed to TAAs or TAA-coding molecules,Citation252-256 2 on strategies for targeting DCs in vivo,Citation257,258 and 1 on the adoptive transfer of allogenic DCs (in combination with donor lymphocyte infusions).Citation259 Finally, the DC-based immunotherapeutic regimens employed in 2 of these studies could not be determined, owing to the lack of access to the corresponding reports.Citation260,261 In many instances, DCs were employed as standalone therapeutic agents, i.e., administered in the presence of standard adjuvants only.Citation221-225,229,232,234,240,243,245,246,249-251 Alternatively, DC-based interventions were administered together with cytokine-induced killer (CIK) cells,Citation220,233,247,252-255 adoptively transferred T lymphocytes,Citation226,236,239,248,256,259 chemotherapy,Citation227,228,237 immunostimulatory cytokines,Citation230,235,242 TLR agonists,Citation257 or radiation therapy.Citation233,238,256,262,263 As for the main oncological indications investigating in this context, 7 trials enrolled melanoma patients,Citation226,230,236,238,250,251 4 subjects with pancreatic carcinoma,Citation220,227,228,248 4 women with breast carcinoma,Citation222,255,258,260 4 patients with various brain tumors, including glioblastoma;Citation234,242,249,252 3 ovarian carcinoma patients,Citation229,235 and the others a broad panel of hematological and solid neoplasms.Citation221,224,225,231-233,237,239-241,243,244,246,247,253,254,256,257,259,261 Taken together, the results of these studies (the majority of which was Phase I or II trials) indicate that DC-based anticancer interventions are generally well tolerated and elicit anticancer immune responses that, at least in a fraction of patients, underpin objective clinical responses. Of note, Vassilaros and colleagues published 15-y clinical follow-up data from a Phase III study testing a variant of mucin 1 (MUC1)Citation264,265 targeted to DCs in vivo upon conjugation with oxidized mannan (an MRC1 ligand) vs. placebo in MUC1+ breast carcinoma patients.Citation258 In this setting, recurrence rate was 12.5% among subjects treated with immunotherapy (mean time to recurrence: 118 mo) and 60% among patients receiving placebo only (mean time to recurrence: 65.8 mo).Citation258 These data indicate that harnessing MRC1 to specifically target TAAs to DCs in vivo may constitute an efficient means to elicit therapeutically relevant immune responses. Large Phase III clinical trials are required to properly evaluate the clinical potential of this DC-based anticancer intervention.

Of note, in a recent study testing the therapeutic profile of a variant of NY-ESO-1 targeted to DEC-205 (CDX-1401), 6 of 8 patients who also received immune checkpoint inhibitors, such as the cytotoxic T lymphocyte-associated protein 4 (CTLA4)-specific, FDA-approved agent ipilimumab,Citation266,267 experienced objective tumor regression.Citation257 In spite of the current paucity of data on combining DC-based anticancer interventions with immune checkpoint blockers,Citation257,268 this is expected to become an area of intense clinical investigation.

Among the numerous preclinical studies published during the past 13 mo with direct or indirect implications for DC-based anticancer immunotherapy, we found of particular interest the works of: (1) Dubrot and colleagues (University of Geneva Medical School; Geneva, Switzerland), who discovered that lymph node stromal cells are capable of taking up peptides complexed with MHC Class II molecules from DCs and present them to CD4+ T cells in the context of inhibitory signals, thereby promoting antigen-specific tolerance;Citation269 (2) Arora and co-workers (Albert Einstein College of Medicine; Bronx, NY, US), who identified CD8α+DEC-205+ DCs as the major regulators of the innate immune response to glycolipid antigens of invariant natural killer T cells;Citation270 (3) Schraml and collaborators (London Research Institute; London, UK), who proposed C-type lectin domain family 9, member A (CLEC9A, best known as DNGR1) as a phenotypic marker that allows for the precise discrimination of DCs from cells of the monocytic lineage;Citation271 (4) Klebanoff et al. (NCI-NIH; Bethesda, MD, US), who demonstrated the importance of retinoic acid for the homeostasis of various DC subsets;Citation272 (5) Baker and colleagues (Harvard Medical School; Boston, MA, US), who demonstrated that the neonatal Fc receptor (encoded by FCGRT) is required for DCs to take up TAAs complexed with IgGs in an optimal manner and initiate therapeutically relevant immune responses against colorectal carcinoma;Citation273 (6) Muller and coworkers (University Hospital Basel; Basel, Switzerland), who discovered that microtubule inhibitors of the dolastatin family exert potent immunostimulatory effects as they induce DC maturation;Citation274 and (7) Baghdadi and collaborators (Hokkaido University; Sapporo, Japan), who characterized a mechanism through which T-cell immunoglobulin and mucin domain containing 4 (TIMD4) promotes the autophagic degradation of dead cancer cells engulfed by DCs and macrophages, de facto inhibiting their ability to elicit a tumor-targeting immune response.Citation275 These latter results add to a large amount of data demonstrating that autophagy can exert oncosuppressive functions or promote anticancer immune responses, but also favor tumor progression or inhibit immunosurveillance.Citation75,276-284 According to current models, the impact of autophagy on cancer can indeed vary between such extremes depending not only on the cell type mounting an autophagic response (e.g., malignant, stromal or immune cells), but also on disease stage (e.g., pre-malignant vs. established lesions) and immunological proficiency of the host.

Ongoing Trials

When this trial watch was being redacted (August 2014), official sources listed no less than 31 clinical trials initiated after August 1st, 2013 to evaluate the safety and efficacy of DC-based anticancer interventions for oncological indications (source http://www.clinicaltrials.gov). Of these studies, 11 involve DCs pulsed ex vivo with TAAs or TAA-derived peptides (NCT01946373, NCT01944709, NCT01974661, NCT02018458, NCT02049489, NCT02061332, NCT02061423, NCT02063724, NCT02070406, NCT02111941, NCT02115126), 8 DCs exposed ex vivo to autologous tumor cell lysates (NCT01803152, NCT01946373, NCT01957956, NCT01973322, NCT02010606, NCT02146066, NCT02151448, NCT02033616), 5 DCs genetically modified to express TAAs or immunostimulatory molecules (NCT01924156, NCT01956630, NCT01983748, NCT01995708, NCT02170389), 2 sipuleucel-T (NCT01981122, NCT02159950), 2 autologous DCs expanded ex vivo but not loaded with TAAs or TAA-coding molecules (NCT01883297, NCT01926639), and 2 strategies for the targeting of DCs in vivo (NCT02122861, NCT02129075). In addition, 2 clinical trials have been launched during the last 13 mo to assess the utility of specific follow-up procedures in the context of sipuleucel-T-based immunotherapy (NCT02036918, NCT02042053) ().

Table 1. Clinical trials recently initiated to test the therapeutic profile of dendritic cell-based interventions in cancer patients

In particular, (1) autologous DCs loaded ex vivo with full-length v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2),Citation285,286 peptides thereof, or a mix of cyclin B1 (CCNB1)- and Wilms tumor 1 (WT1)-derived epitopes,Citation287-289 are being tested, either alone or coupled to recombinant interleukin 1 receptor antagonist (IL1RN, best known as anakinra or Kineret®) and/or neoadjuvant chemotherapy in breast carcinoma patients (NCT02018458, NCT02061332, NCT02061423, NCT02063724); (2) the safety and efficacy of DCs exposed ex vivo to purified CD133-derived peptidesCitation290,291 are being evaluated as a standalone therapeutic intervention in subjects with glioblastoma (NCT02049489); (3) DCs co-cultured with several antigenic epitopes are being evaluated as a single agent in hepatocellular carcinoma patients (NCT01974661); (4) the clinical profile of DCs exposed ex vivo to an Epstein-Barr virus-derived TAA (latent membrane protein 2, LMP2) or peptides thereof, administered in combination with a TLR9 agonist,Citation209,211,292-294 is being assessed in individuals with lymphoma (NCT02115126); (5) DCs loaded ex vivo with peptides derived from melan-A (MLANA, best known as MART1) and/or cancer/testis antigen 1B (CTAG1B, best known as NY-ESO-1)Citation295,296 are being tested as a single agent or as a support to adoptively transferred T cells plus high-dose interleukin-2 (IL-2)Citation210,297-299 in patients with melanoma or other solid tumors (NCT01944709, NCT01946373, NCT02070406); (6) DCs co-cultured with folate receptor 1 (FOLR1)-derived peptidesCitation300 are being investigated as a standalone therapeutic maneuver in subjects with ovarian carcinoma (NCT02111941). Of note, NCT01944709 has already been terminated owing to disease progression in several patients.

DCs exposed ex vivo to autologous tumor cell lysates are being tested (1) in patients with brain malignancies, as a standalone therapeutic intervention or combined with the vascular endothelial growth factor (VEGF)-targeting monoclonal antibody bevacizumabCitation301,302 (NCT02010606, NCT02146066); (2) in subjects with melanoma, as a support to adoptively transferred T cells plus high-dose IL-2, or radiotherapyCitation262 and/or IFNα-based immunotherapyCitation303,304 (NCT01973322, NCT01946373); (3) in patients with newly diagnosed gliosarcoma, in combination with temozolomide (an alkylating agent currently approved for the treatment of astrocytoma, glioblastoma multiforme and melanoma)Citation305,306 (NCT019579569); (4) in subjects with ovarian cancer, in conjunction with the immunostimulatory cytokine granulocyte macrophage colony-stimulating factor (GM-CSF)Citation307 (NCT02033616) or with standard of care chemotherapy (NCT02107378; NCT02107937; NCT02107950); (5) as an adjuvant treatment of peritoneal surface malignancies, in combination with IFNα, celecoxib (an FDA-approved nonsteroidal anti-inflammatory drug specific for cyclooxygenase-2)Citation308,309 and rintatolimod (an experimental TLR3 agonist also known as Ampligen®)Citation310-312 (NCT02151448); (6) in men with prostate carcinoma, either as a standalone therapeutic intervention (NCT02137746), or combined with prostatectomy (NCT02107404), irradiation (NCT02107430), docetaxel-based chemotherapy (NCT02105675; NCT02111577) or hormone therapy (NCT02107391); and (7) in adults and children with sarcoma, in combination with gemcitabine (an immunostimulatory nucleoside analog licensed for the treatment of various carcinomas)Citation67,68,313,314 and/or the FDA-approved TLR7 agonist imiquimodCitation315-319 (NCT01803152).

Moreover, (1) DCs transfected with bulk RNA isolated from autologous tumor cells are being tested as a standalone therapeutic intervention in uveal melanoma patients (NCT01983748); (2) DCs electroporated with RNA coding for WT1, melanoma antigen family C1 (MAGEC1) and melanoma antigen family A3 (MAGEA3)Citation320-323are being investigated as a consolidation therapy for multiple myeloma patients undergoing autologous stem cell transplantation (NCT01995708); (3) DCs genetically modified to express MUC1 and baculoviral IAP repeat containing 5 (BIRC5, best known as survivin)Citation324-326 are being evaluated as a support to the adoptive transfer of CIK cellsCitation327-331 in subjects with renal cell carcinoma (NCT01924156); (4) DCs engineered to express the immunostimulatory molecule CD40 ligand (CD40LG)Citation30,332 are being assessed as a neoadjuvant intervention in patients with resectable kidney cancer (NCT02170389); and (5) DCs subjected to a not better defined genetic modification are being tested as a support to CIK cell-based immunotherapyCitation327-331 in leukemia patients relapsing upon allogenic stem cell transplantation (NCT01956630). Sipuleucel-T is being tested in combination with enzalutamide (an FDA-approved androgen receptor antagonist)Citation333,334 or tasquinimod (an experimental agent with immunomodulatory and antiangiogenic activity)Citation335-337 in men with castration-refractory prostate cancer (NCT01981122, NCT02159950), while autologous DCs expanded ex vivo but not loaded with TAAs or genetically modified are being investigated as a support to the adoptive transfer to restimulated tumor-infiltrating lymphocytes plus low-dose IL-2Citation330,331,338,339 in melanoma patients (NCT01883297), or to radiotherapy and rituximab (and FDA-approved monoclonal antibody specific for CD20)Citation340,341 in subjects with follicular lymphoma (NCT01926639). As for strategies targeting DCs in vivo, (1) CDX-1401Citation257,342 is being tested, in combination with recombinant fms-related tyrosine kinase 3 ligand (FLT3LG)Citation343,344 and the experimental TLR3 ligand Hiltonol® (polyinosinic-polycytidylic acid stabilized in poly-L-lysine and carboxymethylcellulose), in melanoma patients; and (2) a lentiviral vector encoding NY-ESO-1 and targeting DC-SIGN (ID-LV305)Citation208,345,346 is being assessed as a standalone therapeutic intervention in patients with NY-ESO-1+ solid tumors (NCT02122861). Finally, 2 trials have been launched during the last 13 mo to assess the performance of positron emission tomography (PET), magnetic resonance imaging (MRI) and lymph node biopsies for predicting the immunological responses of patients with castration-refractory prostate cancer to sipuleucel-T (NCT02036918, NCT02042053).

As for the clinical trials listed in our previous Trial Watch dealing with this topic,Citation79,215 the following studies have changed status: NCT00722098, NCT00814892, NCT00961844, NCT01128803, NCT01334047, and NCT01783431, which have been “Terminated;" NCT01302821 and NCT01398124, which have been “Withdrawn;" NCT01216436, which has been “Suspended;" NCT00753220, NCT00795977, NCT00868114, NCT00937183, NCT00978913, NCT01082198, NCT01146262, NCT01213407, NCT01235845, NCT01530698, and NCT01567202, whose status is now “Unknown;" NCT01483274, now listed as “Not yet recruiting;" NCT01808820, NCT01876212, NCT01734304, NCT01686334, NCT01807065, NCT01804465, NCT01818986, and NCT01833208, which are now listed as “Recruiting;" NCT00601094, NCT00618891, NCT00622401, NCT00626483, NCT00639639, NCT00852007, NCT00890032, NCT00910650, NCT00970203, NCT00923351, NCT01189383, NCT01280552, NCT01347034, NCT01413295, NCT01431196, NCT01456065, NCT01487863, NCT01525017, NCT01582672, and NCT01832870, now listed as “Active, not recruiting;” NCT00612001, NCT00672542, NCT00678119, NCT00683241, NCT00715104, NCT00815607, NCT00846456, NCT00893945, NCT00913913, NCT00923910, NCT01042366, NCT01066390, NCT01171469, NCT01241682, NCT01373515, NCT01410968, NCT01574222, NCT01617629, and NCT01671592, which have been “Completed” (source http://www.clinicaltrials.gov). NCT00722098 and NCT01783431 have been terminated owing to low accrual, NCT00814892 because of funding issues, NCT00961844 due to logistic problems, and NCT01334047 since new knowledge about anticancer vaccines had to be taken into consideration. NCT01398124 has been withdrawn because the study was not to be pursued. The suspension of NCT01216436 has been dictated by a lack of funds. To the best of our knowledge, the reasons behind the termination of NCT00961844 and the withdrawal of NCT01302821, as well as the results of NCT00678119, NCT00683241, NCT00715104, NCT00815607, NCT00893945, NCT00913913, NCT01042366, NCT01171469, NCT01241682, NCT01373515, NCT01410968, NCT01574222, NCT01617629, and NCT01671592 are not available. Conversely, the results of NCT00612001,Citation347 NCT00672542,Citation348 NCT00846456,Citation249 and NCT01066390Citation251 have already been disseminated (see above). NCT00923910 tested the safety and efficacy of DCs pulsed with WT1-derived peptides combined with donor lymphocytes in patients with hematological malignancies. A total of five donors and five recipients were enrolled in this study, none of whom developed severe side effects including graft-vs.-host reactions. All recipients, however, suffered from mild toxicities, including reduced platelet and white blood cell counts (in 80-100% of patients), as well as fever (in 60% of patients) (source http://www.clinicaltrials.gov).

Concluding Remarks

As summarized above, a broad panel of interventions has been developed throughout the past two decades to harness the potent immunostimulatory activity of DCs against cancer. The climax of this intense wave of translational and clinical investigation has been attained with the approval of sipuleucel-T for use in castration-refractory prostate cancer patients. Notwithstanding this achievement, the development of clinically useful DC-based immunotherapeutic regimens is hampered by several obstacles. First, most of these interventions rely on the isolation and expansion of autologous DCs that are optionally activated, loaded with TAAs and/or genetically modified, an ensemble of procedures that require good manufacturing practices (GMP)-compliant facilities and hence entail a significant cost. Second, although several TAAs have been identified and can be selectively targeted with DC-based vaccines, most of them are not bona fide tumor rejection antigens (TRAs), implying that the immune response that they elicit is often incapable of mediating complete tumor rejection. Third, only a fraction of cancer patients can be allocated to receiving peculiar types of DC-based therapy. For instance, the use of autologous DCs pulsed ex vivo with tumor cell lysates or tumor-derived RNA can only be envisioned for patients with neoplastic lesions that can be biopsied. Fourth, which specific DC subset elicits superior immune responses against malignant cells remains to be determined. Fifth, in the absence of adequate maturation signals, DCs mediate tolerogenic, rather than immunostimulatory, functions. Although this does not constitute an issue for DCs expanded ex vivo, targeting DCs in vivo may suffer from a generalized lack of potent, chemically defined, clinical grade adjuvants. Sixth, DC-based interventions are invariably employed in therapeutic, as opposed to prophylactic, settings. In these conditions, malignant cells have already established an intricate network of immunosuppressive pathways that significantly limit the ability of DCs to elicit anticancer immune responses. Finally, biomarkers that reliably predict the propensity of cancer patients to benefit from DC-based immunotherapy are missing.

Irrespective of these and other limitations, the interest of experimentalists and clinicians in DC-based anticancer interventions remains elevated, as testified by the considerable number of clinical trials launched in the past 13 mo to test this immunotherapeutic paradigm as well as by the huge amount of preclinical studies published in the same period on this topic. We surmise that the additional insights into the functional properties of specific DC subsets, the characterization of bona fide TRAs, the discovery of clinical grade adjuvants with superior immunostimulatory activity, and the identification of new predictive biomarkers will allow for the clinical implementation of novel DC-based anticancer regimens.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Funding

Authors are supported by Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

References

  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392:245-52; PMID:9521319; http://dx.doi.org/10.1038/32588
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature 2007; 449:419-26; PMID:17898760; http://dx.doi.org/10.1038/nature06175
  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31:563-604; PMID:23516985; http://dx.doi.org/10.1146/annurev-immunol-020711-074950
  • Lanzavecchia A, Sallusto F. Ralph M. Steinman 1943-2011. Cell 2011; 147:1216-7; PMID:22263224; http://dx.doi.org/10.1016/j.cell.2011.11.040
  • Nussenzweig MC, Mellman I. Ralph Steinman (1943-2011). Nature 2011; 478:460; PMID:22031432; http://dx.doi.org/10.1038/478460a
  • Mellman I, Nussenzweig M. Retrospective. Ralph M. Steinman (1943-2011). Science 2011; 334:466; PMID:22034425; http://dx.doi.org/10.1126/science.1215136
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973; 137:1142-62; PMID:4573839; http://dx.doi.org/10.1084/jem.137.5.1142
  • Banchereau J, Paczesny S, Blanco P, Bennett L, Pascual V, Fay J, Palucka AK. Dendritic cells: controllers of the immune system and a new promise for immunotherapy. Ann N Y Acad Sci 2003; 987:180-7; PMID:12727638; http://dx.doi.org/10.1111/j.1749-6632.2003.tb06047.x
  • Klechevsky E, Flamar AL, Cao Y, Blanck JP, Liu M, O’Bar A, Agouna-Deciat O, Klucar P, Thompson-Snipes L, Zurawski S et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood 2010; 116:1685-97; PMID:20530286; http://dx.doi.org/10.1182/blood-2010-01-264960
  • Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G. Dendritic cells as vectors for therapy. Cell 2001; 106:271-4; PMID:11509176; http://dx.doi.org/10.1016/S0092-8674(01)00448-2
  • Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, Banchereau J. Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 2003; 19:225-34; PMID:12932356; http://dx.doi.org/10.1016/S1074-7613(03)00208-5
  • Palucka AK, Ueno H, Fay JW, Banchereau J. Taming cancer by inducing immunity via dendritic cells. Immunol Rev 2007; 220:129-50; PMID:17979844; http://dx.doi.org/10.1111/j.1600-065X.2007.00575.x
  • Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V et al. Dendritic cell subsets in health and disease. Immunol Rev 2007; 219:118-42; PMID:17850486; http://dx.doi.org/10.1111/j.1600-065X.2007.00551.x
  • Banchereau J, Pulendran B, Steinman R, Palucka K. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J Exp Med 2000; 192:F39-44; PMID:11120782; http://dx.doi.org/10.1084/jem.192.12.F39
  • Berard F, Blanco P, Davoust J, Neidhart-Berard EM, Nouri-Shirazi M, Taquet N, Rimoldi D, Cerottini JC, Banchereau J, Palucka AK. Cross-priming of naive CD8+ T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 2000; 192:1535-44; PMID:11104796; http://dx.doi.org/10.1084/jem.192.11.1535
  • Li D, Romain G, Flamar AL, Duluc D, Dullaers M, Li XH, Zurawski S, Bosquet N, Palucka AK, Le Grand R et al. Targeting self- and foreign antigens to dendritic cells via DC-ASGPR generates IL-10-producing suppressive CD4+ T cells. J Exp Med 2012; 209:109-21; PMID:22213806; http://dx.doi.org/10.1084/jem.20110399
  • Jotwani R, Palucka AK, Al-Quotub M, Nouri-Shirazi M, Kim J, Bell D, Banchereau J, Cutler CW. Mature dendritic cells infiltrate the T cell-rich region of oral mucosa in chronic periodontitis: in situ, in vivo, and in vitro studies. J Immunol 2001; 167:4693-700; PMID:11591800; http://dx.doi.org/10.4049/jimmunol.167.8.4693
  • Matsui T, Connolly JE, Michnevitz M, Chaussabel D, Yu CI, Glaser C, Tindle S, Pypaert M, Freitas H, Piqueras B et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009; 182:6815-23; PMID:19454677; http://dx.doi.org/10.4049/jimmunol.0802008
  • Nouri-Shirazi M, Banchereau J, Bell D, Burkeholder S, Kraus ET, Davoust J, Palucka KA. Dendritic cells capture killed tumor cells and present their antigens to elicit tumor-specific immune responses. J Immunol 2000; 165:3797-803; PMID:11034385; http://dx.doi.org/10.4049/jimmunol.165.7.3797
  • Rolland A, Guyon L, Gill M, Cai YH, Banchereau J, McClain K, Palucka AK. Increased blood myeloid dendritic cells and dendritic cell-poietins in Langerhans cell histiocytosis. J Immunol 2005; 174:3067-71; PMID:15728521; http://dx.doi.org/10.4049/jimmunol.174.5.3067
  • Chomarat P, Banchereau J, Davoust J, Palucka AK. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 2000; 1:510-4; PMID:11101873; http://dx.doi.org/10.1038/82763
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296-306; PMID:15803149; http://dx.doi.org/10.1038/nri1592
  • Blanco P, Palucka AK, Gill M, Pascual V, Banchereau J. Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001; 294:1540-3; PMID:11711679; http://dx.doi.org/10.1126/science.1064890
  • Pulendran B, Palucka K, Banchereau J. Sensing pathogens and tuning immune responses. Science 2001; 293:253-6; PMID:11452116; http://dx.doi.org/10.1126/science.1062060
  • Hambleton S, Salem S, Bustamante J, Bigley V, Boisson-Dupuis S, Azevedo J, Fortin A, Haniffa M, Ceron-Gutierrez L, Bacon CM et al. IRF8 mutations and human dendritic-cell immunodeficiency. N Engl J Med 2011; 365:127-38; PMID:21524210; http://dx.doi.org/10.1056/NEJMoa1100066
  • Lambrecht BN, Hammad H. Taking our breath away: dendritic cells in the pathogenesis of asthma. Nat Rev Immunol 2003; 3:994-1003; PMID:14647481; http://dx.doi.org/10.1038/nri1249
  • Miller E, Bhardwaj N. Dendritic cell dysregulation during HIV-1 infection. Immunol Rev 2013; 254:170-89; PMID:23772620; http://dx.doi.org/10.1111/imr.12082
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258
  • Richman LP, Vonderheide RH. Anti-human CD40 monoclonal antibody therapy is potent without FcR crosslinking. Oncoimmunology 2014; 3:e28610; PMID:25097801; http://dx.doi.org/10.4161/onci.28610
  • Sandin LC, Totterman TH, Mangsbo SM. Local immunotherapy based on agonistic CD40 antibodies effectively inhibits experimental bladder cancer. Oncoimmunology 2014; 3:e27400; PMID:24701374; http://dx.doi.org/10.4161/onci.27400
  • Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, Mucida D, Merad M, Steinman RM. Specialized role of migratory dendritic cells in peripheral tolerance induction. J Clin Invest 2013; 123:844-54; PMID:23298832
  • Watkins SK, Hurwitz AA. FOXO3: a master switch for regulating tolerance and immunity in dendritic cells. Oncoimmunology 2012; 1:252-4; PMID:22720261; http://dx.doi.org/10.4161/onci.1.2.18241
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annu Rev Immunol 2003; 21:685-711; PMID:12615891; http://dx.doi.org/10.1146/annurev.immunol.21.120601.141040
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:23175281; http://dx.doi.org/10.1038/nrm3479
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008
  • Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, Gonnella R, Frati L, Faggioni A. Activation of dendritic cells by tumor cell death. Oncoimmunology 2012; 1:1218-9; PMID:23170286; http://dx.doi.org/10.4161/onci.20428
  • Jin P, Han TH, Ren J, Saunders S, Wang E, Marincola FM, Stroncek DF. Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies. J Transl Med 2010; 8:4; PMID:20078880; http://dx.doi.org/10.1186/1479-5876-8-4
  • Quah BJ, O’Neill HC. Maturation of function in dendritic cells for tolerance and immunity. J Cell Mol Med 2005; 9:643-54; PMID:16202211; http://dx.doi.org/10.1111/j.1582-4934.2005.tb00494.x
  • Nakahara T, Moroi Y, Uchi H, Furue M. Differential role of MAPK signaling in human dendritic cell maturation and Th1Th2 engagement. J Dermatol Sci 2006; 42:1-11; PMID:16352421; http://dx.doi.org/10.1016/j.jdermsci.2005.11.004
  • Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol 2013; 31:743-91; PMID:23330953; http://dx.doi.org/10.1146/annurev-immunol-020711-074929
  • Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 2006; 6:476-83; PMID:16691244; http://dx.doi.org/10.1038/nri1845
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annu Rev Immunol 2012; 30:1-22; PMID:22136168; http://dx.doi.org/10.1146/annurev-immunol-100311-102839
  • Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M. CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189:587-92; PMID:9927520; http://dx.doi.org/10.1084/jem.189.3.587
  • Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999; 96:1036-41; PMID:9927689; http://dx.doi.org/10.1073/pnas.96.3.1036
  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315:107-11; PMID:17204652; http://dx.doi.org/10.1126/science.1136080
  • Ueno H, Palucka AK, Banchereau J. The expanding family of dendritic cell subsets. Nat Biotechnol 2010; 28:813-5; PMID:20697407; http://dx.doi.org/10.1038/nbt0810-813
  • Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J et al. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010; 234:199-212; PMID:20193020; http://dx.doi.org/10.1111/j.0105-2896.2009.00884.x
  • Satpathy AT, Wu X, Albring JC, Murphy KM. Re(de)fining the dendritic cell lineage. Nat Immunol 2012; 13:1145-54; PMID:23160217; http://dx.doi.org/10.1038/ni.2467
  • Palucka K, Banchereau J. Human dendritic cell subsets in vaccination. Curr Opin Immunol 2013; 25:396-402; PMID:23725656; http://dx.doi.org/10.1016/j.coi.2013.05.001
  • Klechevsky E, Banchereau J. Human dendritic cells subsets as targets and vectors for therapy. Ann N Y Acad Sci 2013; 1284:24-30; PMID:23651190; http://dx.doi.org/10.1111/nyas.12113
  • Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity 2014; 40:642-56; PMID:24837101; http://dx.doi.org/10.1016/j.immuni.2014.04.016
  • Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008; 29:497-510; PMID:18789730; http://dx.doi.org/10.1016/j.immuni.2008.07.013
  • Clausen BE, Girard-Madoux MJ. IL-10 control of dendritic cells in the skin. Oncoimmunology 2013; 2:e23186; PMID:23802070; http://dx.doi.org/10.4161/onci.23186
  • Sere K, Felker P, Hieronymus T, Zenke M. TGFbeta1 microenvironment determines dendritic cell development. Oncoimmunology 2013; 2:e23083; PMID:23687620; http://dx.doi.org/10.4161/onci.23083
  • Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207:1273-81; PMID:20479115; http://dx.doi.org/10.1084/jem.20100348
  • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1283-92; PMID:20479118; http://dx.doi.org/10.1084/jem.20100223
  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJ, Dunbar PR, Wadley RB, Jeet V et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med 2010; 207:1247-60; PMID:20479116; http://dx.doi.org/10.1084/jem.20092140
  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207:1261-71; PMID:20479117; http://dx.doi.org/10.1084/jem.20092618
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol 2012; 12:557-69; PMID:22790179; http://dx.doi.org/10.1038/nri3254
  • Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev 2010; 234:18-31; PMID:20193009; http://dx.doi.org/10.1111/j.0105-2896.2009.00870.x
  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999; 284:1835-7; PMID:10364556; http://dx.doi.org/10.1126/science.284.5421.1835
  • Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1:305-10; PMID:11017101; http://dx.doi.org/10.1038/79747
  • Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu XL, Trinchieri G, O'Garra A, Liu YJ. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocytemacrophage colony-stimulating factor. J Exp Med 2002; 195:953-8; PMID:11927638; http://dx.doi.org/10.1084/jem.20020045
  • Moseman EA, Liang X, Dawson AJ, Panoskaltsis-Mortari A, Krieg AM, Liu YJ, Blazar BR, Chen W. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells. J Immunol 2004; 173:4433-42; PMID:15383574; http://dx.doi.org/10.4049/jimmunol.173.7.4433
  • Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 2006; 6:715-27; PMID:16977338; http://dx.doi.org/10.1038/nri1936
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/10.1126/science.1203486
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014
  • Scarlett UK, Rutkowski MR, Rauwerdink AM, Fields J, Escovar-Fadul X, Baird J, Cubillos-Ruiz JR, Jacobs AC, Gonzalez JL, Weaver J et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J Exp Med 2012; 209:495-506; PMID:22351930; http://dx.doi.org/10.1084/jem.20111413
  • Tomihara K, Guo M, Shin T, Sun X, Ludwig SM, Brumlik MJ, Zhang B, Curiel TJ, Shin T. Antigen-specific immunity and cross-priming by epithelial ovarian carcinoma-induced CD11b(+)Gr-1(+) cells. J Immunol 2010; 184:6151-60; PMID:20427766; http://dx.doi.org/10.4049/jimmunol.0903519
  • Chaput N, Conforti R, Viaud S, Spatz A, Zitvogel L. The Janus face of dendritic cells in cancer. Oncogene 2008; 27:5920-31; PMID:18836473; http://dx.doi.org/10.1038/onc.2008.270
  • Taieb J, Chaput N, Menard C, Apetoh L, Ullrich E, Bonmort M, Péquignot M, Casares N, Terme M, Flament C et al. A novel dendritic cell subset involved in tumor immunosurveillance. Nat Med 2006; 12:214-9; PMID:16444265; http://dx.doi.org/10.1038/nm1356
  • Ma Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, Portela Catani JP, Hannani D, Duret H et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity 2013; 38:729-41; PMID:23562161; http://dx.doi.org/10.1016/j.immuni.2013.03.003
  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, Galluzzi L, Adjemian S, Kepp O, Niso-Santano M et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678-84; PMID:23019653; http://dx.doi.org/10.1126/science.1224922
  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, Shen S, Kepp O, Scoazec M, Mignot G et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573-7; PMID:22174255; http://dx.doi.org/10.1126/science.1208347
  • Noessner E, Brech D, Mendler AN, Masouris I, Schlenker R, Prinz PU. Intratumoral alterations of dendritic-cell differentiation and CD8(+) T-cell anergy are immune escape mechanisms of clear cell renal cell carcinoma. Oncoimmunology 2012; 1:1451-3; PMID:23243626; http://dx.doi.org/10.4161/onci.21356
  • Sisirak V, Faget J, Vey N, Blay JY, Menetrier-Caux C, Caux C, Bendriss-Vermare N. Plasmacytoid dendritic cells deficient in IFNalpha production promote the amplification of FOXP3 regulatory T cells and are associated with poor prognosis in breast cancer patients. Oncoimmunology 2013; 2:e22338; PMID:23482834; http://dx.doi.org/10.4161/onci.22338
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L et al. Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111-34; PMID:23170259; http://dx.doi.org/10.4161/onci.21494
  • Reichert TE, Scheuer C, Day R, Wagner W, Whiteside TL. The number of intratumoral dendritic cells and zeta-chain expression in T cells as prognostic and survival biomarkers in patients with oral carcinoma. Cancer 2001; 91:2136-47; PMID:11391595; http://dx.doi.org/10.1002/1097-0142(20010601)91:11%3c2136::AID-CNCR1242%3e3.0.CO;2-Q
  • Ikeguchi M, Ikeda M, Tatebe S, Maeta M, Kaibara N. Clinical significance of dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 1998; 5:1185-9; PMID:9683832
  • Ishigami S, Natsugoe S, Matsumoto M, Okumura H, Sakita H, Nakashima S, Takao S, Aikou T. Clinical implications of intratumoral dendritic cell infiltration in esophageal squamous cell carcinoma. Oncol Rep 2003; 10:1237-40; PMID:12883687
  • Kakeji Y, Maehara Y, Korenaga D, Tsujitani S, Haraguchi M, Watanabe A, Orita H, Sugimachi K. Prognostic significance of tumor-host interaction in clinical gastric cancer: relationship between DNA ploidy and dendritic cell infiltration. J Surg Oncol 1993; 52:207-12; PMID:8468980; http://dx.doi.org/10.1002/jso.2930520402
  • Ishigami S, Aikou T, Natsugoe S, Hokita S, Iwashige H, Tokushige M, Sonoda S. Prognostic value of HLA-DR expression and dendritic cell infiltration in gastric cancer. Oncology 1998; 55:65-9; PMID:9428378; http://dx.doi.org/10.1159/000011837
  • Okuyama T, Maehara Y, Kakeji Y, Tsuijitani S, Korenaga D, Sugimachi K. Interrelation between tumor-associated cell surface glycoprotein and host immune response in gastric carcinoma patients. Cancer 1998; 82:1468-75; PMID:9554522; http://dx.doi.org/10.1002/(SICI)1097-0142(19980415)82:8%3c1468::AID-CNCR6%3e3.0.CO;2-5
  • Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Xiangming C, Iwashige H, Aridome K, Hokita S, Aikou T. Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer. Cancer Lett 2000; 159:103-8; PMID:10974412; http://dx.doi.org/10.1016/S0304-3835(00)00542-5
  • Saito H, Osaki T, Murakami D, Sakamoto T, Kanaji S, Ohro S, Tatebe S, Tsujitani S, Ikeguchi M. Prediction of sites of recurrence in gastric carcinoma using immunohistochemical parameters. J Surg Oncol 2007; 95:123-8; PMID:17262742; http://dx.doi.org/10.1002/jso.20612
  • Daud AI, Mirza N, Lenox B, Andrews S, Urbas P, Gao GX, Lee JH, Sondak VK, Riker AI, Deconti RC et al. Phenotypic and functional analysis of dendritic cells and clinical outcome in patients with high-risk melanoma treated with adjuvant granulocyte macrophage colony-stimulating factor. J Clin Oncol 2008; 26:3235-41; PMID:18591558; http://dx.doi.org/10.1200/JCO.2007.13.9048
  • Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, Tang ZY. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132:293-301; PMID:16421755; http://dx.doi.org/10.1007/s00432-006-0075-y
  • Yin XY, Lu MD, Lai YR, Liang LJ, Huang JF. Prognostic significances of tumor-infiltrating S-100 positive dendritic cells and lymphocytes in patients with hepatocellular carcinoma. Hepatogastroenterology 2003; 50:1281-4; PMID:14571719
  • Nakakubo Y, Miyamoto M, Cho Y, Hida Y, Oshikiri T, Suzuoki M, Hiraoka K, Itoh T, Kondo S, Katoh H. Clinical significance of immune cell infiltration within gallbladder cancer. Br J Cancer 2003; 89:1736-42; PMID:14583778; http://dx.doi.org/10.1038/sj.bjc.6601331
  • Honig A, Schaller N, Dietl J, Backe J, Kammerer U. S100 as an immunohistochemically-detected marker with prognostic significance in endometrial carcinoma. Anticancer Res 2005; 25:1747-53; PMID:16033094
  • Chang KC, Huang GC, Jones D, Lin YH. Distribution patterns of dendritic cells and T cells in diffuse large B-cell lymphomas correlate with prognoses. Clin Cancer Res 2007; 13:6666-72; PMID:18006767; http://dx.doi.org/10.1158/1078-0432.CCR-07-0504
  • Furihata M, Ohtsuki Y, Sonobe H, Araki K, Ogata T, Toki T, Ogoshi S, Tamiya T. Prognostic significance of simultaneous infiltration of HLA-DR-positive dendritic cells and tumor infiltrating lymphocytes into human esophageal carcinoma. Tohoku J Exp Med 1993; 169:187-95; PMID:8248911; http://dx.doi.org/10.1620/tjem.169.187
  • Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H, Nohara T, Gon G, Toyoda M, Tanigawa N. Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 2003; 104:92-7; PMID:12532424; http://dx.doi.org/10.1002/ijc.10915
  • Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V, Rabbe N, Laurans L, Tartour E, de Chaisemartin L et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol 2008; 26:4410-7; PMID:18802153; http://dx.doi.org/10.1200/JCO.2007.15.0284
  • Sautes-Fridman C, Cherfils-Vicini J, Damotte D, Fisson S, Fridman WH, Cremer I, Dieu-Nosjean MC. Tumor microenvironment is multifaceted. Cancer Metastasis Rev 2011; 30:13-25; PMID:21271351; http://dx.doi.org/10.1007/s10555-011-9279-y
  • Ladanyi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I, Tímár J. Density of DC-LAMP(+) mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother 2007; 56:1459-69; PMID:17279413; http://dx.doi.org/10.1007/s00262-007-0286-3
  • Kobayashi M, Suzuki K, Yashi M, Yuzawa M, Takayashiki N, Morita T. Tumor infiltrating dendritic cells predict treatment response to immmunotherapy in patients with metastatic renal cell carcinoma. Anticancer Res 2007; 27:1137-41; PMID:17465253
  • Conrad C, Gilliet M. Plasmacytoid dendritic cells and regulatory T cells in the tumor microenvironment: a dangerous liaison. Oncoimmunology 2013; 2:e23887; PMID:23762788; http://dx.doi.org/10.4161/onci.23887
  • Ishigami S, Ueno S, Matsumoto M, Okumura H, Arigami T, Uchikado Y, Setoyama T, Arima H, Sasaki K, Kitazono M et al. Prognostic value of CD208-positive cell infiltration in gastric cancer. Cancer Immunol Immunother 2010; 59:389-95; PMID:19760221; http://dx.doi.org/10.1007/s00262-009-0758-8
  • Sandel MH, Dadabayev AR, Menon AG, Morreau H, Melief CJ, Offringa R, van der Burg SH, Janssen-van Rhijn CM, Ensink NG, Tollenaar RA et al. Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer: role of maturation status and intratumoral localization. Clin Cancer Res 2005; 11:2576-82; PMID:15814636; http://dx.doi.org/10.1158/1078-0432.CCR-04-1448
  • Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, Bremond A, Goddard S, Pin JJ, Barthelemy-Dubois C et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res 2004; 10:7466-74; PMID:15569976; http://dx.doi.org/10.1158/1078-0432.CCR-04-0684
  • Jensen TO, Schmidt H, Moller HJ, Donskov F, Hoyer M, Sjoegren P, Christensen IJ, Steiniche T. Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage III melanoma. Cancer 2012; 118:2476-85; PMID:21953023; http://dx.doi.org/10.1002/cncr.26511
  • Labidi-Galy SI, Treilleux I, Goddard-Leon S, Combes JD, Blay JY, Ray-Coquard I, Caux C, Bendriss-Vermare N. Plasmacytoid dendritic cells infiltrating ovarian cancer are associated with poor prognosis. Oncoimmunology 2012; 1:380-2; PMID:22737622; http://dx.doi.org/10.4161/onci.18801
  • Zitvogel L, Kroemer G. Targeting dendritic cell metabolism in cancer. Nat Med 2010; 16:858-9; PMID:20689548; http://dx.doi.org/10.1038/nm0810-858
  • Lombardi V, Akbari O. Dendritic cell modulation as a new interventional approach for the treatment of asthma. Drug News Perspect 2009; 22:445-51; PMID:20016853
  • Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science 2004; 305:200-5; PMID:15247469; http://dx.doi.org/10.1126/science.1100369
  • Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10:475-80; PMID:15122249; http://dx.doi.org/10.1038/nm1039
  • Nabel GJ. Designing tomorrow's vaccines. N Engl J Med 2013; 368:551-60; PMID:23388006; http://dx.doi.org/10.1056/NEJMra1204186
  • Gross CC, Wiendl H. Dendritic cell vaccination in autoimmune disease. Curr Opin Rheumatol 2013; 25:268-74; PMID:23370378; http://dx.doi.org/10.1097/BOR.0b013e32835cb9f2
  • Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. Lancet Oncol 2014; 15:e257-67; PMID:24872109; http://dx.doi.org/10.1016/S1470-2045(13)70585-0
  • Gilboa E. DC-based cancer vaccines. J Clin Invest 2007; 117:1195-203; PMID:17476349; http://dx.doi.org/10.1172/JCI31205
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7:790-802; PMID:17853902; http://dx.doi.org/10.1038/nri2173
  • Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD, Watkins SC, Todo S, Herberman RB, Lotze MT et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2002; 2:337-49; PMID:12440225; http://dx.doi.org/10.1046/j.1359-4117.2002.01050.x
  • Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res 1999; 59:4035-41; PMID:10463604
  • Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M, Atianzar K, Kuo BY, Gardner B, Batra RK et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clin Cancer Res 2004; 10:2891-901; PMID:15102698; http://dx.doi.org/10.1158/1078-0432.CCR-03-0380
  • Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res 2006; 66:8887-96; PMID:16951206; http://dx.doi.org/10.1158/0008-5472.CAN-05-3448
  • Endo H, Saito T, Kenjo A, Hoshino M, Terashima M, Sato T, Anazawa T, Kimura T, Tsuchiya T, Irisawa A et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J Hepatobiliary Pancreat Sci 2012; 19:465-75; PMID:21983893; http://dx.doi.org/10.1007/s00534-011-0457-7
  • You CX, Shi M, Liu Y, Cao M, Luo R, Hermonat PL. AAV2IL-12 gene delivery into dendritic cells (DC) enhances CTL stimulation above other IL-12 applications: evidence for IL-12 intracrine activity in DC. Oncoimmunology 2012; 1:847-55; PMID:23162752; http://dx.doi.org/10.4161/onci.20504
  • Bol KF, Tel J, de Vries IJ, Figdor CG. Naturally circulating dendritic cells to vaccinate cancer patients. Oncoimmunology 2013; 2:e23431; PMID:23802086; http://dx.doi.org/10.4161/onci.23431
  • Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 1997; 70:706-15; PMID:9096653; http://dx.doi.org/10.1002/(SICI)1097-0215(19970317)70:6%3c706::AID-IJC13%3e3.0.CO;2-7
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H. Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol 1998; 68:79-91; PMID:9624036; http://dx.doi.org/10.1002/(SICI)1096-9098(199806)68:2%3c79::AID-JSO3%3e3.0.CO;2-H
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol 1998; 185:65-74; PMID:9636684; http://dx.doi.org/10.1006/cimm.1998.1277
  • Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A 1998; 95:9482-7; PMID:9689106; http://dx.doi.org/10.1073/pnas.95.16.9482
  • Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptoticnecrotic tumor cells. Int J Cancer 2001; 93:539-48; PMID:11477558; http://dx.doi.org/10.1002/ijc.1365
  • Paczesny S, Beranger S, Salzmann JL, Klatzmann D, Colombo BM. Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res 2001; 61:2386-9; PMID:11289101
  • Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshfegh A, Osterborg A, Mellstedt H. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia 2004; 18:1810-5; PMID:15385926; http://dx.doi.org/10.1038/sj.leu.2403517
  • Kokhaei P, Rezvany MR, Virving L, Choudhury A, Rabbani H, Osterborg A, Mellstedt H. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell-tumour hybrids in B-CLL. Leukemia 2003; 17:894-9; PMID:12750703; http://dx.doi.org/10.1038/sj.leu.2402913
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86-9; PMID:9510252; http://dx.doi.org/10.1038/32183
  • Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N. Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998; 188:1359-68; PMID:9763615; http://dx.doi.org/10.1084/jem.188.7.1359
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1:1297-302; PMID:7489412; http://dx.doi.org/10.1038/nm1295-1297
  • Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol 1995; 18:86-94; PMID:8574470; http://dx.doi.org/10.1097/00002371-199508000-00002
  • Mayordomo JI, Loftus DJ, Sakamoto H, De Cesare CM, Appasamy PM, Lotze MT, Storkus WJ, Appella E, DeLeo AB. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med 1996; 183:1357-65; PMID:8666894; http://dx.doi.org/10.1084/jem.183.4.1357
  • Paglia P, Chiodoni C, Rodolfo M, Colombo MP. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med 1996; 183:317-22; PMID:8551239; http://dx.doi.org/10.1084/jem.183.1.317
  • Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ, Jr. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094-8; PMID:9725199
  • Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 1996; 183:87-97; PMID:8551248; http://dx.doi.org/10.1084/jem.183.1.87
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia-Prats MD, DeLeo AB, Lotze MT. Bone marrow-derived dendritic cells serve as potent adjuvants for peptide-based antitumor vaccines. Stem Cells 1997; 15:94-103; PMID:9090785; http://dx.doi.org/10.1002/stem.150094
  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat Med 1999; 5:405-11; PMID:10202929; http://dx.doi.org/10.1038/7403
  • Boczkowski D, Nair SK, Snyder D, Gilboa E. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465-72; PMID:8760800; http://dx.doi.org/10.1084/jem.184.2.465
  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 1997; 186:1177-82; PMID:9314567; http://dx.doi.org/10.1084/jem.186.7.1177
  • Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 2000; 60:1028-34; PMID:10706120
  • Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AM, Amir A, Husain R, Doshi R, et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol 2000; 18:1273-8; PMID:11101806; http://dx.doi.org/10.1038/82383
  • Manickan E, Kanangat S, Rouse RJ, Yu Z, Rouse BT. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol 1997; 61:125-32; PMID:9021916
  • Song W, Kong HL, Carpenter H, Torii H, Granstein R, Rafii S, Moore MA, Crystal RG. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med 1997; 186:1247-56; PMID:9334364; http://dx.doi.org/10.1084/jem.186.8.1247
  • Tuting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol 1997; 27:2702-7; PMID:9368629; http://dx.doi.org/10.1002/eji.1830271033
  • Wan Y, Bramson J, Carter R, Graham F, Gauldie J. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum Gene Ther 1997; 8:1355-63; PMID:9295130; http://dx.doi.org/10.1089/hum.1997.8.11-1355
  • McArthur JG, Mulligan RC. Induction of protective anti-tumor immunity by gene-modified dendritic cells. J Immunother 1998; 21:41-7; PMID:9456435; http://dx.doi.org/10.1097/00002371-199801000-00005
  • Ishida T, Chada S, Stipanov M, Nadaf S, Ciernik FI, Gabrilovich DI, Carbone DP. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin Exp Immunol 1999; 117:244-51; PMID:10444254; http://dx.doi.org/10.1046/j.1365-2249.1999.00913.x
  • Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, DeLeo AB, Robbins P, Knop J, Enk AH. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1999; 1:400-6; PMID:10753065; http://dx.doi.org/10.1002/(SICI)1521-2254(199911/12)1:6%3c400::AID-JGM68%3e3.0.CO;2-D
  • Wan Y, Emtage P, Zhu Q, Foley R, Pilon A, Roberts B, Gauldie J. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells. Cell Immunol 1999; 198:131-8; PMID:10648127; http://dx.doi.org/10.1006/cimm.1999.1585
  • Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000; 191:1699-708; PMID:10811863; http://dx.doi.org/10.1084/jem.191.10.1699
  • Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A, Amarnani SN, Glaspy JA, McBride WH, Economou JS. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother 2000; 23:59-66; PMID:10687138; http://dx.doi.org/10.1097/00002371-200001000-00008
  • Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagawa S, Mizuguchi H, Mori K, Okada Y, Fujita T, Hayakawa T et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61:7913-9; PMID:11691812
  • Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol 2000; 165:5713-9; PMID:11067929; http://dx.doi.org/10.4049/jimmunol.165.10.5713
  • Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nat Med 2000; 6:1011-7; PMID:10973321; http://dx.doi.org/10.1038/79519
  • Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg 2001; 94:474-81; PMID:11235953; http://dx.doi.org/10.3171/jns.2001.94.3.0474
  • Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 2002; 22:613-21; PMID:12014629
  • Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, Thielemans K. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther 2002; 9:787-97; PMID:12189529; http://dx.doi.org/10.1038/sj.cgt.7700499
  • Li M, You S, Ge W, Ma S, Ma N, Zhao C. Induction of T-cell immunity against leukemia by dendritic cells pulsed with total RNA isolated from leukemia cells. Chin Med J (Engl) 2003; 116:1655-61; PMID:14642130
  • Minami T, Nakanishi Y, Izumi M, Harada T, Hara N. Enhancement of antigen-presenting capacity and antitumor immunity of dendritic cells pulsed with autologous tumor-derived RNA in mice. J Immunother 2003; 26:420-31; PMID:12973031; http://dx.doi.org/10.1097/00002371-200309000-00005
  • Schmidt T, Ziske C, Marten A, Endres S, Tiemann K, Schmitz V, Gorschlüter M, Schneider C, Sauerbruch T, Schmidt-Wolf IG. Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL6 pancreatic murine tumor model. Cancer Res 2003; 63:8962-7; PMID:14695214
  • Jung CW, Kwon JH, Seol JG, Park WH, Hyun JM, Kim ES, Kim ST, Lee SJ, Kim BK, Lee YY. Induction of cytotoxic T lymphocytes by dendritic cells pulsed with murine leukemic cell RNA. Am J Hematol 2004; 75:121-7; PMID:14978690; http://dx.doi.org/10.1002/ajh.10471
  • Liu BY, Chen XH, Gu QL, Li JF, Yin HR, Zhu ZG, Lin YZ. Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer. World J Gastroenterol 2004; 10:630-3; PMID:14991927
  • Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol 2003; 170:5391-7; PMID:12759413; http://dx.doi.org/10.4049/jimmunol.170.11.5391
  • Celluzzi CM, Falo LD, Jr. Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J Immunol 1998; 160:3081-5; PMID:9531260
  • Wang J, Saffold S, Cao X, Krauss J, Chen W. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 1998; 161:5516-24; PMID:9820528
  • Tanaka H, Shimizu K, Hayashi T, Shu S. Therapeutic immune response induced by electrofusion of dendritic and tumor cells. Cell Immunol 2002; 220:1-12; PMID:12718934; http://dx.doi.org/10.1016/S0008-8749(03)00009-1
  • Orentas RJ, Schauer D, Bin Q, Johnson BD. Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine. Cell Immunol 2001; 213:4-13; PMID:11747351; http://dx.doi.org/10.1006/cimm.2001.1864
  • Kjaergaard J, Shimizu K, Shu S. Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine. Cell Immunol 2003; 225:65-74; PMID:14698141; http://dx.doi.org/10.1016/j.cellimm.2003.09.005
  • Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Müller KJ, Karpas A, Zimmermann U et al. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun 2006; 346:829-39; PMID:16780801; http://dx.doi.org/10.1016/j.bbrc.2006.05.193
  • Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbe J, Bonnotte B. Dendritic cell-tumor cell hybrids and immunotherapy: what's next? Cytotherapy 2011; 13:774-85; PMID:21299362; http://dx.doi.org/10.3109/14653249.2011.553593
  • Errington F, Jones J, Merrick A, Bateman A, Harrington K, Gough M, O'Donnell D, Selby P, Vile R, Melcher A. Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming. Gene Ther 2006; 13:138-49; PMID:16136162; http://dx.doi.org/10.1038/sj.gt.3302609
  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004; 199:815-24; PMID:15024047; http://dx.doi.org/10.1084/jem.20032220
  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 2002; 196:1627-38; PMID:12486105; http://dx.doi.org/10.1084/jem.20021598
  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194:769-79; PMID:11560993; http://dx.doi.org/10.1084/jem.194.6.769
  • Adotevi O, Vingert B, Freyburger L, Shrikant P, Lone YC, Quintin-Colonna F, Haicheur N, Amessou M, Herbelin A, Langlade-Demoyen P et al. B subunit of Shiga toxin-based vaccines synergize with alpha-galactosylceramide to break tolerance against self antigen and elicit antiviral immunity. J Immunol 2007; 179:3371-9; PMID:17709554; http://dx.doi.org/10.4049/jimmunol.179.5.3371
  • Berraondo P, Nouze C, Preville X, Ladant D, Leclerc C. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res 2007; 67:8847-55; PMID:17875726; http://dx.doi.org/10.1158/0008-5472.CAN-07-0321
  • Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, Faas SJ, Punt CJ, Torensma R, Adema GJ et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106:1278-85; PMID:15878980; http://dx.doi.org/10.1182/blood-2005-01-0318
  • Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials 2012; 33:4229-39; PMID:22410170; http://dx.doi.org/10.1016/j.biomaterials.2012.02.036
  • Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M, Adema GJ, Brown GD, Figdor CG, de Vries IJ. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood 2012; 119:2284-92; PMID:22234694; http://dx.doi.org/10.1182/blood-2011-08-373944
  • Tacken PJ, Ginter W, Berod L, Cruz LJ, Joosten B, Sparwasser T, Figdor CG, Cambi A. Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood 2011; 118:4111-9; PMID:21860028; http://dx.doi.org/10.1182/blood-2011-04-346957
  • Tacken PJ, Ter Huurne M, Torensma R, Figdor CG. Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking. Eur J Immunol 2012; 42:1989-98; PMID:22653683; http://dx.doi.org/10.1002/eji.201142258
  • Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 2011; 118:6836-44; PMID:21967977; http://dx.doi.org/10.1182/blood-2011-07-367615
  • Wang B. Targeting dendritic cells in situ for breast cancer immunotherapy. Oncoimmunology 2012; 1:1398-400; PMID:23243606; http://dx.doi.org/10.4161/onci.20982
  • Garcia-Vallejo JJ, Unger WW, Kalay H, van Kooyk Y. Glycan-based DC-SIGN targeting to enhance antigen cross-presentation in anticancer vaccines. Oncoimmunology 2013; 2:e23040; PMID:23525136; http://dx.doi.org/10.4161/onci.23040
  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 1998; 4:594-600; PMID:9585234; http://dx.doi.org/10.1038/nm0598-594
  • Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 1999; 147:599-610; PMID:10545503; http://dx.doi.org/10.1083/jcb.147.3.599
  • Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N. Dendritic cell-derived exosomes for cancer immunotherapy: what's next? Cancer Res 2010; 70:1281-5; PMID:20145139; http://dx.doi.org/10.1158/0008-5472.CAN-09-3276
  • Munich S, Sobo-Vujanovic A, Buchser WJ, Beer-Stolz D, Vujanovic NL. Dendritic cell exosomes directly kill tumor cells and activate natural killer cells via TNF superfamily ligands. Oncoimmunology 2012; 1:1074-83; PMID:23170255; http://dx.doi.org/10.4161/onci.20897
  • Kandalaft LE, Powell DJ Jr, Chiang CL, Tanyi J, Kim S, Bosch M, Montone K, Mick R, Levine BL, Torigian DA, et al. Autologous lysate-pulsed dendritic cell vaccination followed by adoptive transfer of vaccine-primed ex vivo co-stimulated T cells in recurrent ovarian cancer. Oncoimmunology 2013; 2:e22664; PMID:23482679; http://dx.doi.org/10.4161/onci.22664
  • Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K, Bartůňková J, Špíšek R. Poly I: c-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials. J Transl Med 2011; 9:223; PMID:22208910; http://dx.doi.org/10.1186/1479-5876-9-223
  • Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spísek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res 2011; 71:4821-33; PMID:21602432; http://dx.doi.org/10.1158/0008-5472.CAN-11-0950
  • Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D, Gorin I, Robert C, Prince HM, Grob JJ et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother 2008; 31:101-12; PMID:18157017; http://dx.doi.org/10.1097/CJI.0b013e318159f5ba
  • Lee J, Boczkowski D, Nair S. Programming human dendritic cells with mRNA. Methods Mol Biol 2013; 969:111-25; PMID:23296931; http://dx.doi.org/10.1007/978-1-62703-260-5_8
  • Blalock LT, Landsberg J, Messmer M, Shi J, Pardee AD, Haskell R, Vujanovic L, Kirkwood JM, Butterfield LH. Human dendritic cells adenovirally-engineered to express three defined tumor antigens promote broad adaptive and innate immunity. Oncoimmunology 2012; 1:287-357; PMID:22737604; http://dx.doi.org/10.4161/onci.18628
  • Garg NK, Dwivedi P, Prabha P, Tyagi RK. RNA pulsed dendritic cells: an approach for cancer immunotherapy. Vaccine 2013; 31:1141-56; PMID:23306369; http://dx.doi.org/10.1016/j.vaccine.2012.12.027
  • Koido S, Homma S, Okamoto M, Namiki Y, Takakura K, Uchiyama K, Kajihara M, Arihiro S, Imazu H, Arakawa H et al. Fusions between dendritic cells and whole tumor cells as anticancer vaccines. Oncoimmunology 2013; 2:e24437; PMID:23762810; http://dx.doi.org/10.4161/onci.24437
  • Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. J Drug Deliv 2013; 2013:869718; PMID:24228179; http://dx.doi.org/10.1155/2013/869718
  • Vingert B, Adotevi O, Patin D, Jung S, Shrikant P, Freyburger L, Eppolito C, Sapoznikov A, Amessou M, Quintin-Colonna F et al. The Shiga toxin B-subunit targets antigen in vivo to dendritic cells and elicits anti-tumor immunity. Eur J Immunol 2006; 36:1124-35; PMID:16568496; http://dx.doi.org/10.1002/eji.200535443
  • Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Ricciardi-Castagnoli P et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J Immunol 2000; 165:3301-8; PMID:10975847; http://dx.doi.org/10.4049/jimmunol.165.6.3301
  • Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM. Liposomal delivery of antigen to human dendritic cells. Vaccine 2003; 21:883-90; PMID:12547598; http://dx.doi.org/10.1016/S0264-410X(02)00536-4
  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res 2004; 64:4357-65; PMID:15205352; http://dx.doi.org/10.1158/0008-5472.CAN-04-0138
  • Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 2007; 25:4757-66; PMID:17512099; http://dx.doi.org/10.1016/j.vaccine.2007.04.029
  • Yang L, Yang H, Rideout K, Cho T, Joo KI, Ziegler L, Elliot A, Walls A, Yu D, Baltimore D et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 2008; 26:326-34; PMID:18297056; http://dx.doi.org/10.1038/nbt1390
  • Hangalapura BN, Oosterhoff D, de Groot J, Boon L, Tuting T, van den Eertwegh AJ, Gerritsen WR, van Beusechem VW, Pereboev A, Curiel DT et al. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine. Cancer Res 2011; 71:5827-37; PMID:21747119; http://dx.doi.org/10.1158/0008-5472.CAN-11-0804
  • Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O'Neill AM, de Gruijl TD et al. A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine 2009; 27:7116-24; PMID:19786146; http://dx.doi.org/10.1016/j.vaccine.2009.09.055
  • Korokhov N, de Gruijl TD, Aldrich WA, Triozzi PL, Banerjee PT, Gillies SD, Curiel TJ, Douglas JT, Scheper RJ, Curiel DT. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biol Ther 2005; 4:289-94; PMID:15753654; http://dx.doi.org/10.4161/cbt.4.3.1499
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699-716; PMID:22934262; http://dx.doi.org/10.4161/onci.20696
  • Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G et al. Trial watch: toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179
  • Duluc D, Joo H, Ni L, Yin W, Upchurch K, Li D, Xue Y, Klucar P, Zurawski S, Zurawski G et al. Induction and activation of human Th17 by targeting antigens to dendritic cells via dectin-1. J Immunol 2014; 192:5776-88; PMID:24835401; http://dx.doi.org/10.4049/jimmunol.1301661
  • Yu CI, Becker C, Wang Y, Marches F, Helft J, Leboeuf M, Anguiano E, Pourpe S, Goller K, Pascual V et al. Human CD1c +dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-beta. Immunity 2013; 38:818-30; PMID:23562160; http://dx.doi.org/10.1016/j.immuni.2013.03.004
  • Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, Freyburger L, Clement O, Marcheteau E, Gey A, Fraisse G et al. Mucosal imprinting of vaccine-induced CD8(+) T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 2013; 5:172ra20; PMID:23408053; http://dx.doi.org/10.1126/scitranslmed.3004888
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771; PMID:24286020; http://dx.doi.org/10.4161/onci.25771
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411-22; PMID:20818862; http://dx.doi.org/10.1056/NEJMoa1001294
  • Higano CS, Small EJ, Schellhammer P, Yasothan U, Gubernick S, Kirkpatrick P, Kantoff PW. Sipuleucel-T. Nat Rev Drug Discov 2010; 9:513-4; PMID:20592741; http://dx.doi.org/10.1038/nrd3220
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17:3520-6; PMID:21471425; http://dx.doi.org/10.1158/1078-0432.CCR-10-3126
  • Galluzzi L. New immunotherapeutic paradigms for castration-resistant prostate cancer. Oncoimmunology 2013; 3:e26084; http://dx.doi.org/10.4161/onci.26084
  • Qiu Y, Yun MM, Xu MB, Wang YZ, Yun S. Pancreatic carcinoma-specific immunotherapy using synthesised alpha-galactosyl epitope-activated immune responders: findings from a pilot study. Int J Clin Oncol 2013; 18:657-65; PMID:22847800; http://dx.doi.org/10.1007/s10147-012-0434-4
  • Abediankenari S, Janbabaei Mollae G, Ghasemi M, Yousefzadeh Y, Bahrami M, Alimoghaddam K. Vaccination of diffuse large B- cell lymphoma patients with antigen-primed dendritic cells. Acta Med Iran 2013; 51:284-8; PMID:23737309
  • Fracol M, Xu S, Mick R, Fitzpatrick E, Nisenbaum H, Roses R, Fisher C, Tchou J, Fox K, Zhang P et al. Response to HER-2 pulsed DC1 vaccines is predicted by both HER-2 and estrogen receptor expression in DCIS. Ann Surg Oncol 2013; 20:3233-9; PMID:23851609; http://dx.doi.org/10.1245/s10434-013-3119-y
  • Carreno BM, Becker-Hapak M, Huang A, Chan M, Alyasiry A, Lie WR, Aft RL, Cornelius LA, Trinkaus KM, Linette GP. IL-12p70-producing patient DC vaccine elicits Tc1-polarized immunity. J Clin Invest 2013; 123:3383-94; PMID:23867552; http://dx.doi.org/10.1172/JCI68395
  • Kobayashi M, Sakabe T, Abe H, Tanii M, Takahashi H, Chiba A, Yanagida E, Shibamoto Y, Ogasawara M, Tsujitani S et al. Dendritic cell-based immunotherapy targeting synthesized peptides for advanced biliary tract cancer. J Gastrointest Surg 2013; 17:1609-17; PMID:23877328; http://dx.doi.org/10.1007/s11605-013-2286-2
  • Schuler PJ, Harasymczuk M, Visus C, Deleo A, Trivedi S, Lei Y, Argiris A, Gooding W, Butterfield LH, Whiteside TL et al. Phase I dendritic cell p53 peptide vaccine for head and neck cancer. Clin Cancer Res 2014; 20:2433-44; PMID:24583792; http://dx.doi.org/10.1158/1078-0432.CCR-13-2617
  • Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, Ng C, Avramis E, Seja E, Villanueva A et al. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res 2014; 20:2457-65; PMID:24634374; http://dx.doi.org/10.1158/1078-0432.CCR-13-3017
  • Kobayashi M, Shimodaira S, Nagai K, Ogasawara M, Takahashi H, Abe H, Tanii M, Okamoto M, Tsujitani S, Yusa S et al. Prognostic factors related to add-on dendritic cell vaccines on patients with inoperable pancreatic cancer receiving chemotherapy: a multicenter analysis. Cancer Immunol Immunother 2014; 63:797-806; PMID:24777613; http://dx.doi.org/10.1007/s00262-014-1554-7
  • Koido S, Homma S, Okamoto M, Takakura K, Mori M, Yoshizaki S, Koido S, Homma S, Okamoto M, Takakura K et al. Treatment with Chemotherapy and Dendritic Cells Pulsed with Multiple Wilms’ Tumor 1 (WT1)-Specific MHC Class III-Restricted Epitopes for Pancreatic Cancer. Clin Cancer Res 2014; 20:4228-39; PMID:25056373; http://dx.doi.org/10.1158/1078-0432.CCR-14-0314
  • Lowe DB, Bose A, Taylor JL, Tawbi H, Lin Y, Kirkwood JM, Storkus WJ. Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. Oncoimmunology 2014; 3:e27589; PMID:24734217; http://dx.doi.org/10.4161/onci.27589
  • Ridolfi L, Petrini M, Granato AM, Gentilcore G, Simeone E, Ascierto PA, Pancisi E, Ancarani V, Fiammenghi L, Guidoboni M et al. Low-dose temozolomide before dendritic-cell vaccination reduces (specifically) CD4+CD25++Foxp3+ regulatory T-cells in advanced melanoma patients. J Transl Med 2013; 11:135; PMID:23725550; http://dx.doi.org/10.1186/1479-5876-11-135
  • Reyes D, Salazar L, Espinoza E, Pereda C, Castellon E, Valdevenito R, Huidobro C, Inés Becker M, Lladser A, López MN et al. Tumour cell lysate-loaded dendritic cell vaccine induces biochemical and memory immune response in castration-resistant prostate cancer patients. Br J Cancer 2013; 109:1488-97; PMID:23989944; http://dx.doi.org/10.1038/bjc.2013.494
  • Bapsy PP, Sharan B, Kumar C, Das RP, Rangarajan B, Jain M, Suresh Attili VS, Subramanian S, Aggarwal S, Srivastava M et al. Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive care. Cytotherapy 2014; 16:234-44; PMID:24438902; http://dx.doi.org/10.1016/j.jcyt.2013.11.013
  • Gao D, Li C, Xie X, Zhao P, Wei X, Sun W, Liu HC, Alexandrou AT, Jones J, Zhao R et al. Autologous tumor lysate-pulsed dendritic cell immunotherapy with cytokine-induced killer cells improves survival in gastric and colorectal cancer patients. PLoS One 2014; 9:e93886; PMID:24699863; http://dx.doi.org/10.1371/journal.pone.0093886
  • Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, Gustafson MP, Dietz AB, Clark HB, Chen W et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer 2014; 2:4; PMID:24829761; http://dx.doi.org/10.1186/2051-1426-2-4
  • Baek S, Kim YM, Kim SB, Kim CS, Kwon SW, Kim Y, Kim H, Lee H. Therapeutic DC vaccination with IL-2 as a consolidation therapy for ovarian cancer patients: a phase III trial. Cell Mol Immunol 2014; PMID:24976269; http://dx.doi.org/10.1038/cmi.2014.40
  • Poschke I, Lovgren T, Adamson L, Nystrom M, Andersson E, Hansson J, Tell R, Masucci GV, Kiessling R. A phase I clinical trial combining dendritic cell vaccination with adoptive T cell transfer in patients with stage IV melanoma. Cancer Immunol Immunother 2014; 63:1061-71; PMID:24993563; http://dx.doi.org/10.1007/s00262-014-1575-2
  • Ramanathan P, Ganeshrajah S, Raghanvan RK, Singh SS, Thangarajan R. Development and clinical evaluation of dendritic cell vaccines for HPV related cervical cancer - a feasibility study. Asian Pac J Cancer Prev 2014; 15:5909-16; PMID:25081721; http://dx.doi.org/10.7314/APJCP.2014.15.4.1633
  • de Rosa F, Ridolfi L, Ridolfi R, Gentili G, Valmorri L, Nanni O, Petrini M, Fiammenghi L, Granato AM, Ancarani V et al. Vaccination with autologous dendritic cells loaded with autologous tumor lysate or homogenate combined with immunomodulating radiotherapy andor preleukapheresis IFN-alpha in patients with metastatic melanoma: a randomised “proof-of-principle” phase II study. J Transl Med 2014; 12:209; PMID:25053129; http://dx.doi.org/10.1186/1479-5876-12-209
  • Shimizu K, Kotera Y, Aruga A, Takeshita N, Katagiri S, Ariizumi S, Takahashi Y, Yoshitoshi K, Takasaki K, Yamamoto M. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma. Hum Vaccin Immunother 2014; 10:970-6; PMID:24419174; http://dx.doi.org/10.4161/hv.27678
  • Hunyadi J, Andras C, Szabo I, Szanto J, Szluha K, Sipka S, Kovács P, Kiss A, Szegedi G, Altorjay I et al. Autologous dendritic cell based adoptive immunotherapy of patients with colorectal cancer-a phase I-II study. Pathol Oncol Res 2013; PMID:24163303
  • Shibamoto Y, Okamoto M, Kobayashi M, Ayakawa S, Iwata H, Sugie C, Mitsuishi Y, Takahashi H. Immune-maximizing (IMAX) therapy for cancer: combination of dendritic cell vaccine and intensity-modulated radiation. Mol Clin Oncol 2013; 1:649-54; PMID:24649223
  • Everson RG, Jin RM, Wang X, Safaee M, Scharnweber R, Lisiero DN, Soto H, Liau LM, Prins RM. Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2014; 2:10; PMID:24883189; http://dx.doi.org/10.1186/2051-1426-2-10
  • Ng L, Heck W, Lavsa S, Crowther D, Atkinson B, Xiao L, Araujo J. The lack of predictors for rapid progression in prostate cancer patients receiving sipuleucel-T. Cancers (Basel) 2013; 5:511-8; PMID:24216988; http://dx.doi.org/10.3390/cancers5020511
  • Hobo W, Strobbe L, Maas F, Fredrix H, Greupink-Draaisma A, Esendam B, de Witte T, Preijers F, Levenga H, van Rees B et al. Immunogenicity of dendritic cells pulsed with MAGE3, Survivin and B-cell maturation antigen mRNA for vaccination of multiple myeloma patients. Cancer Immunol Immunother 2013; 62:1381-92; PMID:23728352; http://dx.doi.org/10.1007/s00262-013-1438-2
  • Coosemans A, Vanderstraeten A, Tuyaerts S, Verschuere T, Moerman P, Berneman Z, Vergote I, Amant F, Van Gool SW. Immunological response after WT1 mRNA-loaded dendritic cell immunotherapy in ovarian carcinoma and carcinosarcoma. Anticancer Res 2013; 33:3855-9; PMID:24023319
  • Coosemans A, Vanderstraeten A, Tuyaerts S, Verschuere T, Moerman P, Berneman ZN, Vergote I, Amant F, VAN Gool SW. Wilms’ Tumor Gene 1 (WT1)-loaded dendritic cell immunotherapy in patients with uterine tumors: a phase III clinical trial. Anticancer Res 2013; 33:5495-500; PMID:24324087
  • Wang D, Zhang B, Gao H, Ding G, Wu Q, Zhang J, Liao L, Chen H. Clinical research of genetically modified dendritic cells in combination with cytokine-induced killer cell treatment in advanced renal cancer. BMC Cancer 2014; 14:251; PMID:24720900; http://dx.doi.org/10.1186/1471-2407-14-251
  • Shindo Y, Hazama S, Maeda Y, Matsui H, Iida M, Suzuki N, Yoshimura K, Ueno T, Yoshino S, Sakai K et al. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer. J Transl Med 2014; 12:175; PMID:24947606; http://dx.doi.org/10.1186/1479-5876-12-175
  • Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM, Sæbøe-Larssen S, Sandberg C, Brinchmann JE, Helseth E et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013; 62:1499-509; PMID:23817721; http://dx.doi.org/10.1007/s00262-013-1453-3
  • Benteyn D, Van Nuffel AM, Wilgenhof S, Corthals J, Heirman C, Neyns B, Thielemans K, Bonehill A. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL). Biomed Res Int 2013; 2013:976383; PMID:23509826; http://dx.doi.org/10.1155/2013/976383
  • Wilgenhof S, Van Nuffel AM, Benteyn D, Corthals J, Aerts C, Heirman C, Van Riet I, Bonehill A, Thielemans K, Neyns B. A phase IB study on intravenous synthetic mRNA electroporated dendritic cell immunotherapy in pretreated advanced melanoma patients. Ann Oncol 2013; 24:2686-93; PMID:23904461; http://dx.doi.org/10.1093/annonc/mdt245
  • Ren J, Di L, Song G, Yu J, Jia J, Zhu Y, Yan Y, Jiang H, Liang X, Che L et al. Selections of appropriate regimen of high-dose chemotherapy combined with adoptive cellular therapy with dendritic and cytokine-induced killer cells improved progression-free and overall survival in patients with metastatic breast cancer: reargument of such contentious therapeutic preferences. Clin Transl Oncol 2013; 15:780-8; PMID:23359185; http://dx.doi.org/10.1007/s12094-013-1001-9
  • Zhong R, Han B, Zhong H. A prospective study of the efficacy of a combination of autologous dendritic cells, cytokine-induced killer cells, and chemotherapy in advanced non-small cell lung cancer patients. Tumour Biol 2014; 35:987-94; PMID:24006222; http://dx.doi.org/10.1007/s13277-013-1132-1
  • Cui Y, Yang X, Zhu W, Li J, Wu X, Pang Y. Immune response, clinical outcome and safety of dendritic cell vaccine in combination with cytokine-induced killer cell therapy in cancer patients. Oncol Lett 2013; 6:537-41; PMID:24137363
  • Wang ZX, Cao JX, Wang M, Li D, Cui YX, Zhang XY, Liu JL, Li JL. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: a meta-analysis. Cytotherapy 2014; 16:934-45; PMID:24794183; http://dx.doi.org/10.1016/j.jcyt.2014.02.011
  • Hasumi K, Aoki Y, Wantanabe R, Mann DL. Clinical response of advanced cancer patients to cellular immunotherapy and intensity-modulated radiation therapy. Oncoimmunology 2013; 2:e26381; PMID:24349874; http://dx.doi.org/10.4161/onci.26381
  • Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 2014; 6:232ra51; PMID:24739759; http://dx.doi.org/10.1126/scitranslmed.3008068
  • Vassilaros S, Tsibanis A, Tsikkinis A, Pietersz GA, McKenzie IF, Apostolopoulos V. Up to 15-year clinical follow-up of a pilot Phase III immunotherapy study in stage II breast cancer patients using oxidized mannan-MUC1. Immunotherapy 2013; 5:1177-82; PMID:24188672; http://dx.doi.org/10.2217/imt.13.126
  • Ho VT, Kim HT, Kao G, Cutler C, Levine J, Rosenblatt J, Joyce R, Antin JH, Soiffer RJ, Ritz J et al. Sequential infusion of donor derived dendritic cells with donor lymphocyte infusion for relapsed hematologic cancers after allogeneic hematopoietic stem cell transplantation. Am J Hematol 2014; 89:1092-6; PMID:25132538; http://dx.doi.org/10.1002/ajh.23825
  • Takeda T, Takeda T, Etani M, Kobayashi S, Takeda H. [The effect of immunotherapy and hyperthermia on patients with advanced or recurrent breast cancer]. Gan To Kagaku Ryoho 2013; 40:1596-9; PMID:24393860
  • Liu J, Li J, Fan Y, Chang K, Yang X, Zhu W, Wu X, Pang Y. Concurrent dendritic cell vaccine and strontium-89 radiation therapy in the management of multiple bone metastases. Ir J Med Sci 2014; PMID:24876093
  • Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:24319634; http://dx.doi.org/10.4161/onci.25595
  • Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Eric T, Laurence Z, Guido K, Lorenzo G. Trial watch: radioimmunotherapy for oncological indications. Oncoimmunology 2014; DOI: 10.4161/21624011.2014.954929
  • Reichenbach DK, Finn OJ. Early in vivo signaling profiles in MUC1-specific CD4+ T cells responding to two different MUC1-targeting vaccines in two different microenvironments. Oncoimmunology 2013; 2:e23429; PMID:23802084; http://dx.doi.org/10.4161/onci.23429
  • Wang Z, Hall MD, Rewers-Felkins KA, Quinlin IS, Wright SE. Dendritic cells enhance the activity of human MUC1-stimulated mononuclear cells against breast cancer. Oncoimmunology 2013; 2:e23335; PMID:23526065; http://dx.doi.org/10.4161/onci.23335
  • Grimaldi AM, Simeone E, Giannarelli D, Muto P, Falivene S, Borzillo V, Giugliano FM, Sandomenico F, Petrillo A, Curvietto M et al. Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 2014; 3:e28780; PMID:25083318; http://dx.doi.org/10.4161/onci.28780
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297
  • Dhodapkar MV, Dhodapkar KM. Recent advances and new opportunities for targeting human dendritic cells in situ. Oncoimmunology 2014; 3(8); DOI: 10.4161/21624011.2014.954832
  • Dubrot J, Duraes FV, Potin L, Capotosti F, Brighouse D, Suter T, LeibundGut-Landmann S, Garbi N, Reith W, Swartz MA et al. Lymph node stromal cells acquire peptide-MHCII complexes from dendritic cells and induce antigen-specific CD4(+) T cell tolerance. J Exp Med 2014; 211:1153-66; PMID:24842370; http://dx.doi.org/10.1084/jem.20132000
  • Arora P, Baena A, Yu KO, Saini NK, Kharkwal SS, Goldberg MF, Kunnath-Velayudhan S, Carreño LJ, Venkataswamy MM, Kim J et al. A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 2014; 40:105-16; PMID:24412610; http://dx.doi.org/10.1016/j.immuni.2013.12.004
  • Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A, Acton SE, Rogers NC, Moncaut N, Carvajal JJ, Reis e Sousa C. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 2013; 154:843-58; PMID:23953115; http://dx.doi.org/10.1016/j.cell.2013.07.014
  • Klebanoff CA, Spencer SP, Torabi-Parizi P, Grainger JR, Roychoudhuri R, Ji Y, Sukumar M, Muranski P, Scott CD, Hall JA et al. Retinoic acid controls the homeostasis of pre-cDC-derived splenic and intestinal dendritic cells. J Exp Med 2013; 210:1961-76; PMID:23999499; http://dx.doi.org/10.1084/jem.20122508
  • Baker K, Rath T, Flak MB, Arthur JC, Chen Z, Glickman JN, Zlobec I, Karamitopoulou E, Stachler MD, Odze RD et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity 2013; 39:1095-107; PMID:24290911; http://dx.doi.org/10.1016/j.immuni.2013.11.003
  • Muller P, Martin K, Theurich S, Schreiner J, Savic S, Terszowski G, Lardinois D, Heinzelmann-Schwarz VA, Schlaak M, Kvasnicka HM et al. Microtubule-depolymerizing agents used in antibody-drug conjugates induce antitumor immunity by stimulation of dendritic cells. Cancer Immunol Res 2014; 2:741-55; PMID:24916470; http://dx.doi.org/10.1158/2326-6066.CIR-13-0198
  • Baghdadi M, Yoneda A, Yamashina T, Nagao H, Komohara Y, Nagai S, Akiba H, Foretz M, Yoshiyama H, Kinoshita I et al. TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity 2013; 39:1070-81; PMID:24315994; http://dx.doi.org/10.1016/j.immuni.2013.09.014
  • Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, Sykacek P, Frank L, Schramek D, Komnenovic V et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014; 5:3056; PMID:24445999; http://dx.doi.org/10.1038/ncomms4056
  • Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, Chen G, Price S, Lu W, Teng X et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 2013; 27:1447-61; PMID:23824538; http://dx.doi.org/10.1101/gad.219642.113
  • Rosenfeldt MT, O’Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013; 504:296-300; PMID:24305049; http://dx.doi.org/10.1038/nature12865
  • Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011; 333:1109-12; PMID:21868666; http://dx.doi.org/10.1126/science.1201940
  • Ko A, Kanehisa A, Martins I, Senovilla L, Chargari C, Dugue D, Mariño G, Kepp O, Michaud M, Perfettini JL et al. Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling. Cell Death Differ 2014; 21:92-9; PMID:24037090; http://dx.doi.org/10.1038/cdd.2013.124
  • Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on cell death 2012. Cell Death Differ 2012; 19:107-20; PMID:21760595; http://dx.doi.org/10.1038/cdd.2011.96
  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 2015: in press; PMID:25236395; http://dx.doi.org/10.1038/cdd.2014.137
  • Garg AD, Dudek AM, Agostinis P. Autophagy-dependent suppression of cancer immunogenicity and effector mechanisms of innate and adaptive immunity. Oncoimmunology 2013; 2:e26260; PMID:24353910; http://dx.doi.org/10.4161/onci.26260
  • Ma Y, Adjemian S, Yang H, Catani JP, Hannani D, Martins I, Michaud M, Kepp O, Sukkurwala AQ, Vacchelli E et al. ATP-dependent recruitment, survival and differentiation of dendritic cell precursors in the tumor bed after anticancer chemotherapy. Oncoimmunology 2013; 2:e24568; PMID:23894718; http://dx.doi.org/10.4161/onci.24568
  • Kroemer G, Galluzzi L, Zitvogel L. Immunological effects of chemotherapy in spontaneous breast cancers. Oncoimmunology 2013; 2:e27158; PMID:24498568; http://dx.doi.org/10.4161/onci.27158
  • Mortenson ED, Fu YX. Anti-HER2Neu passive-aggressive immunotherapy. Oncoimmunology 2014; 3:e27296; PMID:24605268; http://dx.doi.org/10.4161/onci.27296
  • Moschovi M, Alexiou GA, Patereli A, Stefanaki K, Doussis-Anagnostopoulou I, Stofas A, Sfakianos G, Prodromou N. Prognostic significance of cyclin A and B1 in pediatric embryonal tumors. J Neurooncol 2011; 103:699-704; PMID:21069428; http://dx.doi.org/10.1007/s11060-010-0451-y
  • Andersen RS, Sorensen RB, Ritter C, Svane IM, Becker JC, thor Straten P, Andersen MH. Identification of a cyclin B1-derived CTL epitope eliciting spontaneous responses in both cancer patients and healthy donors. Cancer Immunol Immunother 2011; 60:227-34; PMID:20981424; http://dx.doi.org/10.1007/s00262-010-0933-y
  • Tyler EM, Koehne G. The emergence of WT1-specific T-cell responses following allogeneic T cell-depleted hematopoietic stem cell transplantation and low-dose donor lymphocyte infusions is associated with a graft-vs.- myeloma effect. Oncoimmunology 2013; 2:e24963; PMID:24073375; http://dx.doi.org/10.4161/onci.24963
  • Wang C, Xie J, Guo J, Manning HC, Gore JC, Guo N. Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncol Rep 2012; 28:1301-8; PMID:22895640
  • Tsurumi C, Esser N, Firat E, Gaedicke S, Follo M, Behe M, Elsässer-Beile U, Grosu AL, Graeser R, Niedermann G. Non-invasive in vivo imaging of tumor-associated CD133prominin. PLoS One 2010; 5:e15605; PMID:21187924; http://dx.doi.org/10.1371/journal.pone.0015605
  • Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 2014; 14:546-58; PMID:25060580; http://dx.doi.org/10.1038/nri3713
  • Trinchieri G, Sher A. Cooperation of Toll-like receptor signals in innate immune defence. Nat Rev Immunol 2007; 7:179-90; PMID:17318230; http://dx.doi.org/10.1038/nri2038
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5:471-84; PMID:16763660; http://dx.doi.org/10.1038/nrd2059
  • Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancertestis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5:615-25; PMID:16034368; http://dx.doi.org/10.1038/nrc1669
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; PMID:24498550; http://dx.doi.org/10.4161/onci.26621
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G et al. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:25050207; http://dx.doi.org/10.4161/onci.28344
  • Kershaw MH, Westwood JA, Darcy PK. Gene-engineered T cells for cancer therapy. Nat Rev Cancer 2013; 13:525-41; PMID:23880905; http://dx.doi.org/10.1038/nrc3565
  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299-308; PMID:18354418; http://dx.doi.org/10.1038/nrc2355
  • Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 2009; 9:167-81; PMID:19238149; http://dx.doi.org/10.1038/nrc2583
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/10.4161/onci.27048
  • Bevacizumab in ovarian cancer. Nat Rev Cancer 2012; 12:83; PMID:22270952; http://dx.doi.org/10.1038/nrc3213
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:24073369; http://dx.doi.org/10.4161/onci.24850
  • Lesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapy–revisited. Nat Rev Drug Discov 2011; 10:591-600; PMID:21804596; http://dx.doi.org/10.1038/nrd3500
  • Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 2014; 370:709-22; PMID:24552318; http://dx.doi.org/10.1056/NEJMoa1308345
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352:987-96; PMID:15758009; http://dx.doi.org/10.1056/NEJMoa043330
  • Chen G, Han G, Shen B, Li Y. GM-CSF facilitates the development of inflammation-associated colorectal carcinoma. Oncoimmunology 2014; 3:e28186; PMID:24778929; http://dx.doi.org/10.4161/onci.28186
  • Obermajer N, Kalinski P. Key role of the positive feedback between PGE(2) and COX2 in the biology of myeloid-derived suppressor cells. Oncoimmunology 2012; 1:762-4; PMID:22934275; http://dx.doi.org/10.4161/onci.19681
  • FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001; 345:433-42; PMID:11496855; http://dx.doi.org/10.1056/NEJM200108093450607
  • Ming Lim C, Stephenson R, Salazar AM, Ferris RL. TLR3 agonists improve the immunostimulatory potential of cetuximab against EGFR head and neck cancer cells. Oncoimmunology 2013; 2:e24677; PMID:23894722; http://dx.doi.org/10.4161/onci.23187
  • Sharma S, Zhu L, Davoodi M, Harris-White M, Lee JM, St John M, Salgia R, Dubinett S. TLR3 agonists and proinflammatory antitumor activities. Expert Opin Ther Targets 2013; 17:481-3; PMID:23506058; http://dx.doi.org/10.1517/14728222.2013.781585
  • Nicodemus CF, Berek JS. TLR3 agonists as immunotherapeutic agents. Immunotherapy 2010; 2:137-40; PMID:20635920; http://dx.doi.org/10.2217/imt.10.8
  • Gujar SA, Clements D, Lee PW. Two is better than one: complementing oncolytic virotherapy with gemcitabine to potentiate antitumor immune responses. Oncoimmunology 2014; 3:e27622; PMID:24804161; http://dx.doi.org/10.4161/onci.27622
  • Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK. Myeloid derived suppressor cells: targets for therapy. Oncoimmunology 2013; 2:e24117; PMID:23734336; http://dx.doi.org/10.4161/onci.24117
  • Hotz C, Bourquin C. Systemic cancer immunotherapy with Toll-like receptor 7 agonists: timing is everything. Oncoimmunology 2012; 1:227-8; PMID:22720251; http://dx.doi.org/10.4161/onci.1.2.18169
  • Demaria S, Vanpouille-Box C, Formenti SC, Adams S. The TLR7 agonist imiquimod as an adjuvant for radiotherapy-elicited in situ vaccination against breast cancer. Oncoimmunology 2013; 2:e25997; PMID:24404422; http://dx.doi.org/10.4161/onci.25997
  • Li ZJ, Sohn KC, Choi DK, Shi G, Hong D, Lee HE, Whang KU, Lee YH, Im M, Lee Y et al. Roles of TLR7 in activation of NF-kappaB signaling of keratinocytes by imiquimod. PLoS One 2013; 8:e77159; PMID:24146965; http://dx.doi.org/10.1371/journal.pone.0077159
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. Oncoimmunology 2012; 1:1661-3; PMID:23264929; http://dx.doi.org/10.4161/onci.22033
  • Drobits B, Holcmann M, Amberg N, Swiecki M, Grundtner R, Hammer M, Colonna M, Sibilia M. Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells. J Clin Invest 2012; 122:575-85; PMID:22251703; http://dx.doi.org/10.1172/JCI61034
  • Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2013; 2:e27010; PMID:24498547; http://dx.doi.org/10.4161/onci.27010
  • Suri A, Saini S, Sinha A, Agarwal S, Verma A, Parashar D, Singh S, Gupta N, Jagadish N. Cancer testis antigens: a new paradigm for cancer therapy. Oncoimmunology 2012; 1:1194-6; PMID:23170277; http://dx.doi.org/10.4161/onci.20686
  • Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancertestis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96; PMID:22710665; http://dx.doi.org/10.1038/nrurol.2012.117
  • Sznurkowski JJ, Zawrocki A, Karczewska J, Emerich J, Biernat W. Should we consider cancertestis antigens NY-ESO-1, MAGE-A4 and MAGE-A1 as potential targets for immunotherapy in vulvar squamous cell carcinoma? Histopathology 2011; 58:481-3; PMID:21323970; http://dx.doi.org/10.1111/j.1365-2559.2011.03772.x
  • Turksma AW, Bontkes HJ, Ruizendaal JJ, Scholten KB, Akershoek J, Rampersad S, Moesbergen LM, Cillessen SA, Santegoets SJ, de Gruijl TD et al. Exploring dendritic cell based vaccines targeting survivin for the treatment of head and neck cancer patients. J Transl Med 2013; 11:152; PMID:23787039; http://dx.doi.org/10.1186/1479-5876-11-152
  • Manuel ER, Blache CA, Ellenhorn JD, Diamond DJ. Survivin the battle against immunosuppression. Oncoimmunology 2012; 1:240-1; PMID:22720256; http://dx.doi.org/10.4161/onci.1.2.18180
  • Altieri DC. Targeting survivin in cancer. Cancer Lett 2013; 332:225-8; PMID:22410464; http://dx.doi.org/10.1016/j.canlet.2012.03.005
  • Jiang J, Wu C, Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med 2013; 11:83; PMID:23536996; http://dx.doi.org/10.1186/1479-5876-11-83
  • Rutella S, Locatelli F. Is there a role for cytokine-induced killer cells in cancer immunotherapy? Immunotherapy 2012; 4:867-9; PMID:23046228; http://dx.doi.org/10.2217/imt.12.89
  • Sangiolo D. Cytokine induced killer cells as promising immunotherapy for solid tumors. J Cancer 2011; 2:363-8; PMID:21716717; http://dx.doi.org/10.7150/jca.2.363
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; PMID:23762803; http://dx.doi.org/; http://dx.doi.org/10.4161/onci.24238
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306-15; PMID:22737606; http://dx.doi.org/10.4161/onci.19549
  • Vonderheide RH, Burg JM, Mick R, Trosko JA, Li D, Shaik MN, Tolcher AW, Hamid O. Phase I study of the CD40 agonist antibody CP-870,893 combined with carboplatin and paclitaxel in patients with advanced solid tumors. Oncoimmunology 2013; 2:e23033; PMID:23483678; http://dx.doi.org/10.4161/onci.23033
  • Vogelzang NJ. Enzalutamide–a major advance in the treatment of metastatic prostate cancer. N Engl J Med 2012; 367:1256-7; PMID:23013078; http://dx.doi.org/10.1056/NEJMe1209041
  • Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367:1187-97; PMID:22894553; http://dx.doi.org/10.1056/NEJMoa1207506
  • Raymond E, Dalgleish A, Damber JE, Smith M, Pili R. Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol 2014; 73:1-8; PMID:24162378; http://dx.doi.org/10.1007/s00280-013-2321-8
  • Osanto S, van Poppel H, Burggraaf J. Tasquinimod: a novel drug in advanced prostate cancer. Future Oncol 2013; 9:1271-81; PMID:23980674; http://dx.doi.org/10.2217/fon.13.136
  • George S, Pili R. Tasquinimod: a novel angiogenesis inhibitor-development in prostate cancer. Curr Oncol Rep 2013; 15:65-8; PMID:23334511; http://dx.doi.org/10.1007/s11912-013-0295-7
  • Chaput N, Flament C, Locher C, Desbois M, Rey A, Rusakiewicz S, Poirier-Colame V, Pautier P, Le Cesne A, Soria JC et al. Phase I clinical trial combining imatinib mesylate and IL-2: HLA-DR NK cell levels correlate with disease outcome. Oncoimmunology 2013; 2:e23080; PMID:23525357; http://dx.doi.org/10.4161/onci.23080
  • Pautier P, Locher C, Robert C, Deroussent A, Flament C, Le Cesne A, Rey A, Bahleda R, Ribrag V, Soria JC et al. Phase I clinical trial combining imatinib mesylate and IL-2 in refractory cancer patients: IL-2 interferes with the pharmacokinetics of imatinib mesylate. Oncoimmunology 2013; 2:e23079; PMID:23525192; http://dx.doi.org/10.4161/onci.23079
  • Boissel L, Betancur-Boissel M, Lu W, Krause DS, Van Etten RA, Wels WS, Klingemann H. Retargeting NK-92 cells by means of CD19- and CD20-specific chimeric antigen receptors compares favorably with antibody-dependent cellular cytotoxicity. Oncoimmunology 2013; 2:e26527; PMID:24404423; http://dx.doi.org/10.4161/onci.26527
  • Maloney DG. Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med 2012; 366:2008-16; PMID:22621628; http://dx.doi.org/10.1056/NEJMct1114348
  • Riedmann EM. CDX-1401 combined with TLR agonist: positive phase 1 results. Hum Vaccin Immunother 2012; 8:1742
  • Riediger C, Wingender G, Knolle P, Aulmann S, Stremmel W, Encke J. Fms-like tyrosine kinase 3 receptor ligand (Flt3L)-based vaccination administered with an adenoviral vector prevents tumor growth of colorectal cancer in a BALBc mouse model. J Cancer Res Clin Oncol 2013; 139:2097-110; PMID:24114287; http://dx.doi.org/10.1007/s00432-013-1532-z
  • Valaperti A, Nishii M, Germano D, Liu PP, Eriksson U. Vaccination with Flt3L-induced CD8alpha+ dendritic cells prevents CD4+ T helper cell-mediated experimental autoimmune myocarditis. Vaccine 2013; 31:4802-11; PMID:23948227; http://dx.doi.org/10.1016/j.vaccine.2013.07.084
  • Kretz-Rommel A, Qin F, Dakappagari N, Torensma R, Faas S, Wu D, Bowdish KS. In vivo targeting of antigens to human dendritic cells through DC-SIGN elicits stimulatory immune responses and inhibits tumor growth in grafted mouse models. J Immunother 2007; 30:715-26; PMID:17893564; http://dx.doi.org/10.1097/CJI.0b013e318135472c
  • Pereira CF, Torensma R, Hebeda K, Kretz-Rommel A, Faas SJ, Figdor CG, Adema GJ. In vivo targeting of DC-SIGN-positive antigen-presenting cells in a nonhuman primate model. J Immunother 2007; 30:705-14; PMID:17893563; http://dx.doi.org/10.1097/CJI.0b013e31812e6256
  • Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, Everson R, Yong WH, Lai A, Li G et al. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother 2013; 36:152-7; PMID:23377664; http://dx.doi.org/10.1097/CJI.0b013e3182811ae4
  • Dannull J, Haley NR, Archer G, Nair S, Boczkowski D, Harper M, De Rosa N, Pickett N, Mosca PJ, Burchette J et al. Melanoma immunotherapy using mature DCs expressing the constitutive proteasome. J Clin Invest 2013; 123:3135-45; PMID:23934126; http://dx.doi.org/10.1172/JCI67544

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.