1,345
Views
21
CrossRef citations to date
0
Altmetric
EDITORIAL

Novel immune checkpoint blocker approved for the treatment of advanced melanoma

, &
Article: e967147 | Received 15 Sep 2014, Accepted 15 Sep 2014, Published online: 31 Oct 2014

A few days ago, on September 4th, 2014, the US Food and Drug Administration (FDA) granted accelerated approval to pembrolizumab, a monoclonal antibody formerly known as lambrolizumab that specifically targets programmed cell death 1 (PDCD1, best known as PD-1), for use in patients with advanced or unresectable melanoma who fail to respond to other therapies (source http://www.fda.gov/NewsEvents/Newsroom/PressAnnou-ncements/ucm412802.htm). Thus, pembrolizumab, which has been developed by Merck & Co. Inc. (Whitehouse Stations, NJ, US) under the trade name of Keytruda™, adds now to the growing list of immunotherapeutic agents licensed for the treatment of cancer patients.

Pembrolizumab belongs to the class of immunotherapeutics commonly referred to as “checkpoint blockers,” i.e., it mediates antineoplastic effects by preventing cancer cells and the tumor microenvironment to deliver inhibitory signals to T lymphocytes.Citation1-6 The first-in-class of such agents, ipilimumab, which is now commercialized by Bristol-Myers Squibb (New York, NY, US) under the trade name of Yervoy™, has been approved by the US FDA for use in individuals with unresectable or metastatic melanoma on 2011, March 25th.Citation7-11 Similar to pembrolizumab, ipilimumab prevents the delivery of inhibitory signals to immune effector cells, although it specifically targets another immunosuppressive receptor, namely cytotoxic T lymphocyte-associated protein 4 (CTLA4).Citation12-16 In a large, randomized, double-blind, double-dummy, Phase III clinical trial enrolling 676 melanoma patients (NCT00094653), the administration of ipilimumab as a standalone immunotherapeutic intervention was associated with a 4-month improvement in overall survival (OS) over the administration of a peptide vaccine targeting the melanoma-associated antigen premelanosome protein (PMEL, best known as gp100).Citation7 Accordingly, ipilimumab-treated patients exhibited an overall response rate of 10.9%, while that of individuals receiving the gp100-targeting vaccine was 1.5% only. Common side effects associated with the use of ipilimumab included fatigue, diarrhea, skin rash, endocrine deficiencies, and colitis. Moreover, severe to fatal autoimmune reactions were observed in 12.9% of patients treated with ipilimumab. These side effects often, but not always, could be managed with treatment discontinuation coupled to the administration of corticosteroids.Citation7

Pembrolizumab was granted accelerated approval upon the disclosure of safety and efficacy results from a clinical trial enrolling 173 participants with advanced melanoma whose disease progressed after prior treatment.Citation17 Remarkably, 24% of the patients who received pembrolizumab at the recommended dose of 2 mg/kg experienced tumor regression, a response that lasted at least 1.4–8.5 months. A similar response rate was observed among patients treated with 10 mg/kg pembrolizumab (source http://www.fda.gov/NewsEvents/Newsroom/PressAnnou-ncements/ucm412802.htm).Citation17 The safety of pembrolizumab had previously been established in a clinical study enrolling 411 individuals with advanced melanoma (NCT01295827).Citation18 In this cohort, the most common side effects associated with the use of pembrolizumab were fatigue, cough, nausea, pruritus, rash, decreased appetite, constipation, arthralgia and diarrhea. In addition, pembrolizumab caused severe immunological side effects involving healthy organs such as the lungs, colon, hormone-producing glands and liver, in a limited fraction of the study participants.Citation18

Another monoclonal antibody targeting PD-1 (nivolumab, commercialized by Bristol-Myers Squibb under the trade name of Opvido™) has been licensed for use in humans by Japanese regulatory agencies only a month ago.Citation19 The safety and favorable therapeutic profile of nivolumab have been demonstrated in several, randomized clinical trials (most of which involving melanoma patients).Citation20-24 Last July, Bristol-Myers Squibb announced that it would seek FDA approval on nivolumab by September 30th, 2014 (source http://www.zacks.com/stock/news/139801/BristolMyers-to-Seek-US-Approval-for-ImmunoOncology-Drug). Now, according to a recent Bloomberg report, Bristol-Myers Squibb has filed a lawsuit against Merck & Co. Inc., accusing the latter of patent infringement on the development of pembrolizumab (http://www.bloomberg.com/news/2014-09-08/uber-technologies-bristol-myers-intellectual-property.html).

The therapeutic profile of several antibodies specific for the major PD-1 ligand, i.e., CD274 (best known as PD-L1 or B7-H1),Citation25,26 is also being intensively investigated in both pre-clinical and clinical settings.Citation2,27,28 These agents include, but are not limited to, MEDI4736 (developed by Astra Zeneca, London, UK), MPDL3280A (developed by Roche, Basel, Switzerland), and MSB0010718C (developed by EMD Serono, Inc., a subsidiary of Merck and Co. Inc. based in Rockland, MA, US).Citation29-35 Conversely, molecules that would specifically inhibit the other main endogenous activator of PD-1, i.e., PDCD1 ligand 2 (PDCD1LG2, best known as PD-L2), have failed to reach clinical development yet.Citation2,28

As it stands, immune checkpoint blockers including ipilimumab, pembrolizumab and nivolumab represent a new, efficient alternative to the standard management of advanced melanoma.Citation9,36-42 Other immunotherapeutics employed as standalone interventions also provide clinical benefits to melanoma patients, at least in part reflecting the peculiar immunological features of melanoma cells.Citation43-45 At odds with several other immunotherapeutic agents, however, checkpoint blockers used as monotherapy are efficient against a wide panel of neoplasms other than melanoma, including (but not limited to)Citation34,46,47 hematological malignancies,Citation48 non-small cell lung carcinoma,Citation32,49-55 renal cell carcinoma,Citation56-60 sarcoma,Citation61 head and neck carcinoma,Citation62,63 ovarian carcinoma,Citation64 bladder carcinoma,Citation65 and perhaps thymomaCitation66 and colorectal cancer.Citation67 In addition, blocking immune checkpoints may consistently ameliorate the efficacy of other (immuno)therapeutic regimens, including not only immunostimulatory cytokinesCitation68-71 and adoptive cell transfer,Citation72-77 but also dendritic cell-, peptide- and DNA-based anticancer vaccines,Citation78-86 Toll-like receptor agonists,Citation87-89 irradiation,Citation90-96 conventional and targeted chemotherapeutics (in particular when these also exert immunostimulatory effects),Citation97-108 oncolytic viruses,Citation109-112 tumor-targeting monoclonal antibodies,Citation28,33,113,114 and immunomodulatory drugs (e.g., lenalidomide).Citation115-117

Combinatorial regimens that simultaneously inhibit CTLA4 and PD-1 mediate superior clinical activity as compared to the blockage of either these immunosuppressive receptors, especially in immunosensitive tumors such as melanomaCitation23 and renal cell carcinoma.Citation118 Along similar lines, combining immune checkpoint blockers with immunostimulatory monoclonal antibodies like lirilumab, which interferes with the activity of inhibitory killer-cell immunoglobulin-like receptors on natural killer cells,Citation119,120 or MEDI6469, which promotes the activity of tumor necrosis factor receptor superfamily, member 4 (TNFRSF4, best known as OX40),Citation42 may provide improved efficacy as compared to monotherapeutic approaches. Combinatorial approaches of this type are being intensively investigated in both preclinical and clinical settings.Citation121

As it stands, efforts should be dedicated at the identification of biomarkers that predict the therapeutic efficacy of immune checkpoint blockers.Citation31,122-129 This is particularly relevant not only because some immune checkpoint blockers such as ipilimumab are associated with a non-negligible rate of severe to fatal autoimmune reactions,Citation7,130-133 but also because all these agents are expensive (the use of pembrolizumab is expected to cost 12,500 USD per month) (source http://www.nytimes.com/2014/09/05/business/merck-wins-approval-of-novel-immune-system-drug-for-cancer.html?_r = 0).

Irrespective of these caveats, pembrolizumab adds to the therapeutic options for patients with advanced melanoma who failed to respond to other treatments. The blockade of immune checkpoints has now become a clinical reality that will benefit patients affected by several malignancies.

Funding

Authors are supported by Ligue contre le Cancer (équipe labelisée); Agence National de la Recherche (ANR); Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; AXA Chair for Longevity Research; Institut National du Cancer (INCa); Fondation Bettencourt-Schueller; Fondation de France; Fondation pour la Recherche Médicale (FRM); the European Commission (ArtForce); the European Research Council (ERC); the LabEx Immuno-Oncology; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI).

References

  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12:252-64; PMID:22437870; http://dx.doi.org/10.1038/nrc3239
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297
  • Chawla A, Philips AV, Alatrash G, Mittendorf E. Immune checkpoints: a therapeutic target in triple negative breast cancer. Oncoimmunology 2014; 3:e28325; PMID:24843833; http://dx.doi.org/10.4161/onci.28325
  • Brahmer JR. Immune checkpoint blockade: the hope for immunotherapy as a treatment of lung cancer? Semin Oncol 2014; 41:126-32; PMID:24565586; http://dx.doi.org/10.1053/j.seminoncol.2013.12.014
  • Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010; 37:430-9; PMID:21074057; http://dx.doi.org/10.1053/j.seminoncol.2010.09.005
  • Nowak AK. Immunological checkpoint inhibitors enter adolescence. Lancet Oncol 2013; 14:1035-7; PMID:24035406; http://dx.doi.org/10.1016/S1470-2045(13)70401-7
  • Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711-23; PMID:20525992; http://dx.doi.org/10.1056/NEJMoa1003466
  • Trial watch: ipilimumab success in melanoma provides boost for cancer immunotherapy. Nat Rev Drug Discov 2010; 9:584; PMID:20671754; http://dx.doi.org/10.1038/nrd3245
  • Erdmann MK. Immunity unleashed in melanoma. Lancet Oncol 2010; 11:108-9; PMID:20152761; http://dx.doi.org/10.1016/S1470-2045(09)70400-0
  • Wolchok JD, Neyns B, Linette G, Negrier S, Lutzky J, Thomas L, Waterfield W, Schadendorf D, Smylie M, Guthrie T Jr, et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 2010; 11:155-64; PMID:20004617; http://dx.doi.org/10.1016/S1470-2045(09)70334-1
  • Sondak VK, Smalley KS, Kudchadkar R, Grippon S, Kirkpatrick P. Ipilimumab. Nat Rev Drug Discov 2011; 10:411-2; PMID:21629286; http://dx.doi.org/10.1038/nrd3463
  • Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1994; 1:405-13; PMID:7882171; http://dx.doi.org/10.1016/1074-7613(94)90071-X
  • Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 1995; 3:541-7; PMID:7584144; http://dx.doi.org/10.1016/1074-7613(95)90125-6
  • Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270:985-8; PMID:7481803; http://dx.doi.org/10.1126/science.270.5238.985
  • Robert L, Harview C, Emerson R, Wang X, Mok S, Homet B, Comin-Anduix B, Koya RC, Robins H, Tumeh PC, et al. Distinct immunological mechanisms of CTLA-4 and PD-1 blockade revealed by analyzing TCR usage in blood lymphocytes. Oncoimmunology 2014; 3:e29244; PMID:25083336; http://dx.doi.org/10.4161/onci.29244
  • Sandin LC, Eriksson F, Ellmark P, Loskog AS, Totterman TH, Mangsbo SM. Local CTLA4 blockade effectively restrains experimental pancreatic adenocarcinoma growth in vivo. Oncoimmunology 2014; 3:e27614; PMID:24701377; http://dx.doi.org/10.4161/onci.27614
  • Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R, Weber JS, Joshua AM, Hwu WJ, Gangadhar TC, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 2014; 384:1109-17; PMID:25034862; http://dx.doi.org/10.1016/S0140-6736(14)60958-2
  • Ribas A, Hodi FS, Kefford R, Hamid O, Daud A, Wolchok JD, et al. Efficacy and safety of the anti-PD-1 monoclonal antibody MK-3475 in 411 patients (pts) with melanoma (MEL). ASCO Meeting Abstr 2014; 32:LBA9000.
  • Deeks ED. Nivolumab: a review of its use in patients with malignant melanoma. Drugs 2014; 74:1233-9; PMID:25022950; http://dx.doi.org/10.1007/s40265-014-0234-4
  • Improved survival ends nivolumab trial early. Cancer Discov 2014; 4:979-80; PMID:25185170; http://dx.doi.org/10.1158/2159-8290.CD-NB2014-104
  • Topalian SL, Sznol M, McDermott DF, Kluger HM, Carvajal RD, Sharfman WH, Brahmer JR, Lawrence DP, Atkins MB, Powderly JD, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol 2014; 32:1020-30; PMID:24590637; http://dx.doi.org/10.1200/JCO.2013.53.0105
  • Weber JS, Kudchadkar RR, Yu B, Gallenstein D, Horak CE, Inzunza HD, Zhao X, Martinez AJ, Wang W, Gibney G, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol 2013; 31:4311-8; PMID:24145345; http://dx.doi.org/10.1200/JCO.2013.51.4802
  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 2013; 369:122-33; PMID:23724867; http://dx.doi.org/10.1056/NEJMoa1302369
  • Lipson EJ. Re-orienting the immune system: durable tumor regression and successful re-induction therapy using anti-PD1 antibodies. Oncoimmunology 2013; 2:e23661; PMID:23734322; http://dx.doi.org/10.4161/onci.23661
  • Schalper KA. PD-L1 expression and tumor-infiltrating lymphocytes: revisiting the antitumor immune response potential in breast cancer. Oncoimmunology 2014; 3:e29288; PMID:25083339; http://dx.doi.org/10.4161/onci.29288
  • Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4 T cells. Oncoimmunology 2013; 2:e23991; PMID:23734334; http://dx.doi.org/10.4161/onci.23991
  • Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366:2455-65; PMID:22658128; http://dx.doi.org/10.1056/NEJMoa1200694
  • Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:23482847; http://dx.doi.org/10.4161/onci.22789
  • Lu J, Lee-Gabel L, Nadeau MC, Ferencz TM, Soefje SA. Clinical evaluation of compounds targeting PD-1PD-L1 pathway for cancer immunotherapy. J Oncol Pharm Pract 2014; PMID:24917416
  • Creelan BC. Update on immune checkpoint inhibitors in lung cancer. Cancer Control 2014; 21:80-9; PMID:24357746
  • Ascierto PA, Kalos M, Schaer DA, Callahan MK, Wolchok JD. Biomarkers for immunostimulatory monoclonal antibodies in combination strategies for melanoma and other tumor types. Clin Cancer Res 2013; 19:1009-20; PMID:23460532; http://dx.doi.org/10.1158/1078-0432.CCR-12-2982
  • Brahmer JR, Rizvi NA, Lutzky J, Khleif S, Blake-Haskins A, Li X, et al. Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. ASCO Meeting Abstr 2014; 32:8021.
  • Callahan MK, Ott PA, Odunsi K, Bertolini SV, Pan LS, Venhaus RR, et al. A phase 1 study to evaluate the safety and tolerability of MEDI4736, an anti-PD-L1 antibody, in combination with tremelimumab in patients with advanced solid tumors. ASCO Meeting Abstr 2014; 32:TPS3120.
  • Lutzky J, Antonia SJ, Blake-Haskins A, Li X, Robbins PB, Shalabi AM, et al. A phase 1 study of MEDI4736, an anti-PD-L1 antibody, in patients with advanced solid tumors. ASCO Meeting Abstr 2014; 32:3001.
  • Segal NH, Antonia SJ, Brahmer JR, Maio M, Blake-Haskins A, Li X, et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. ASCO Meeting Abstr 2014; 32:3002.
  • Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet 2014; 383:816-27; PMID:24054424; http://dx.doi.org/10.1016/S0140-6736(13)60802-8
  • Dranoff G. Intensifying tumour immunity through combination therapy. Lancet Oncol 2012; 13:440-2; PMID:22326921; http://dx.doi.org/10.1016/S1470-2045(12)70051-7
  • Mavilio D, Lugli E. Inhibiting the inhibitors: checkpoints blockade in solid tumors. Oncoimmunology 2013; 2:e26535; PMID:24244910; http://dx.doi.org/10.4161/onci.26535
  • Riley JL. Combination checkpoint blockade–taking melanoma immunotherapy to the next level. N Engl J Med 2013; 369:187-9; PMID:23724866; http://dx.doi.org/10.1056/NEJMe1305484
  • Bhatia S, Thompson JA. Melanoma: immune checkpoint blockade story gets better. Lancet 2014; 384:1078-9; PMID:25034863; http://dx.doi.org/10.1016/S0140-6736(14)61140-5
  • Margolin K. Treatment of advanced melanoma with immunological checkpoint block. Curr Oncol Rep 2011; 13:430-2; PMID:21938386; http://dx.doi.org/10.1007/s11912-011-0195-7
  • Eggermont AM, Robert C. Melanoma: smart therapeutic strategies in immuno-oncology. Nat Rev Clin Oncol 2014; 11:181-2; PMID:24590131; http://dx.doi.org/10.1038/nrclinonc.2014.36
  • Andersen RS, Andersen SR, Hjortso MD, Lyngaa R, Idorn M, Kollgard TM, Met O, Thor Straten P, Hadrup SR. High frequency of T cells specific for cryptic epitopes in melanoma patients. Oncoimmunology 2013; 2:e25374; PMID:24073381; http://dx.doi.org/10.4161/onci.25374
  • Bindea G, Mlecnik B, Angell HK, Galon J. The immune landscape of human tumors: implications for cancer immunotherapy. Oncoimmunology 2014; 3:e27456; PMID:24800163; http://dx.doi.org/10.4161/onci.27456
  • Eggermont A, Robert C, Soria JC, Zitvogel L. Harnessing the immune system to provide long-term survival in patients with melanoma and other solid tumors. Oncoimmunology 2014; 3:e27560; PMID:24719793; http://dx.doi.org/10.4161/onci.27560
  • Callahan MK, Bendell JC, Chan E, Morse M, Pillai RN, Bono P, et al. Phase III, open-label study of nivolumab (anti-PD-1; BMS-936558, ONO-4538) as monotherapy or combined with ipilimumab in advanced or metastatic solid tumors. ASCO Meeting Abstr 2014; 32:TPS3114.
  • Heery CR, O’Sullivan Coyne GH, Madan RA, Schlom J, von Heydebreck A, Cuillerot J-M, et al. Phase I open-label, multiple ascending dose trial of MSB0010718C, an anti-PD-L1 monoclonal antibody, in advanced solid malignancies. ASCO Meeting Abstr 2014; 32:3064.
  • Garcia-Manero G, Martinelli G, Zeidner JF, Avigan D, Anderson KC, Ribrag V, et al. A multicohort trial of the safety and efficacy of the PD-1 inhibitor MK-3475 in patients with hematologic malignancies. ASCO Meeting Abstr 2014; 32:TPS3116.
  • Ansen S, Schultheis AM, Hellmich M, Zander T, Brockmann M, Stoelben E, et al. PD-L1 expression and genotype in non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2014; 32:7517.
  • Brahmer JR, Horn L, Antonia SJ, Spigel DR, Gandhi L, Sequist LV, et al. Survival and long-term follow-up of the phase I trial of nivolumab (Anti-PD-1; BMS-936558; ONO-4538) in patients (pts) with previously treated advanced non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2013; 31:8030.
  • Brahmer JR, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Nivolumab (anti-PD-1, BMS-936558, ONO-4538) in patients (pts) with advanced non-small-cell lung cancer (NSCLC): survival and clinical activity by subgroup analysis. ASCO Meeting Abstr 2014; 32:8112.
  • Calles A, Liao X, Sholl LM, Butaney M, Rodig SJ, Freeman GJ, et al. Differential expression of LKB1, PD-L1, and PD-L2 in KRAS-mutant non-small cell lung cancer in never-smokers. ASCO Meeting Abstr 2014; 32:8032.
  • Carbone DP, Socinski MA, Chen AC, Bhagavatheeswaran P, Reck M, Paz-Ares L. A phase III, randomized, open-label trial of nivolumab (anti-PD-1; BMS-936558, ONO-4538) versus investigator's choice chemotherapy (ICC) as first-line therapy for stage IV or recurrent PD-L1+ non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2014; 32:TPS8128.
  • Garon EB, Leighl NB, Rizvi NA, Blumenschein GR, Balmanoukian AS, Eder JP, et al. Safety and clinical activity of MK-3475 in previously treated patients (pts) with non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2014; 32:8020.
  • Spigel DR, Gettinger SN, Horn L, Herbst RS, Gandhi L, Gordon MS, et al. Clinical activity, safety, and biomarkers of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2013; 31:8008.
  • Callea M, Genega EM, Gupta M, Cheng S, Fay AP, Song J, et al. PD-L1 expression in primary clear cell renal cell carcinomas (ccRCCs) and their metastases. ASCO Meeting Abstr 2014; 32:4585.
  • Callea M, Genega EM, Gupta M, Fay AP, Song J, Carvo I, et al. PD-L1 expression in primary clear cell renal cell carcinomas (ccRCCs) and their metastases. ASCO Meeting Abstr 2014; 32:467.
  • Choueiri TK, Fishman MN, Escudier BJ, Kim JJ, Kluger HM, Stadler WM, et al. Immunomodulatory activity of nivolumab in previously treated and untreated metastatic renal cell carcinoma (mRCC): biomarker-based results from a randomized clinical trial. ASCO Meeting Abstr 2014; 32:5012.
  • Drake CG, McDermott DF, Sznol M, Choueiri TK, Kluger HM, Powderly JD, et al. Survival, safety, and response duration results of nivolumab (Anti-PD-1; BMS-936558; ONO-4538) in a phase I trial in patients with previously treated metastatic renal cell carcinoma (mRCC): long-term patient follow-up. ASCO Meeting Abstr 2013; 31:4514.
  • Fay AP, Callea M, Gray KP, Ho TH, Song J, Carvo I, et al. PD-L1 expression in non-clear cell renal cell carcinoma and benign kidney tumors. ASCO Meeting Abstr 2014; 32:4526.
  • D’Angelo SP, Shoushtari AN, Agaram NP, Kuk D, Qin L-X, Carvajal RD, et al. PD-L1 expression and immune infiltrates in sarcoma. ASCO Meeting Abstr 2014; 32:10522.
  • Junker N, Donia M, Andersen R, Andersen MH, Svane IM. PD-L1 specific tumor infiltrating lymphocytes occur frequently in melanoma and HNSCC patients. ASCO Meeting Abstr 2014; 32:11083.
  • Seiwert TY, Burtness B, Weiss J, Gluck I, Eder JP, Pai SI, et al. A phase Ib study of MK-3475 in patients with human papillomavirus (HPV)-associated and non-HPV-associated head and neck (HN) cancer. ASCO Meeting Abstr 2014; 32:6011.
  • Hamanishi J, Mandai M, Ikeda T, Minami M, Kawaguchi A, Matsumura N, et al. Efficacy and safety of anti-PD-1 antibody (Nivolumab: BMS-936558, ONO-4538) in patients with platinum-resistant ovarian cancer. ASCO Meeting Abstr 2014; 32:5511.
  • Powles T, Vogelzang NJ, Fine GD, Eder JP, Braiteh FS, Loriot Y, et al. Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). ASCO Meeting Abstr 2014; 32:5011.
  • Padda SK, Riess J, Schwartz EJ, Tian L, Kohrt HE, Neal JW, et al. Programmed death receptor ligand-1 (PD-L1) expression in a thymoma (T) tissue microarray (TMA). ASCO Meeting Abstr 2014; 32:7606.
  • Llosa NJ, Housseau F, Wick EC, Hechenbleikner L, Cruise M, Anders R, et al. Immune checkpoints expression in MSI versus MSS colorectal cancers and their potential therapeutic implications. ASCO Meeting Abstr 2014; 32:3620.
  • Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:24073369; http://dx.doi.org/10.4161/onci.24850
  • van den Eertwegh AJ, Versluis J, van den Berg HP, Santegoets SJ, van Moorselaar RJ, van der Sluis TM, Gall HE, Harding TC, Jooss K, Lowy I, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 2012; 13:509-17; PMID:22326922; http://dx.doi.org/10.1016/S1470-2045(12)70007-4
  • Linch SN, Redmond WL. Combined OX40 ligation plus CTLA-4 blockade: more than the sum of its parts. Oncoimmunology 2014; 3:e28245; PMID:25050194; http://dx.doi.org/10.4161/onci.28245
  • John LB, Kershaw MH, Darcy PK. Blockade of PD-1 immunosuppression boosts CAR T-cell therapy. Oncoimmunology 2013; 2:e26286; PMID:24353912; http://dx.doi.org/10.4161/onci.26286
  • John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013; 19:5636-46; PMID:23873688; http://dx.doi.org/10.1158/1078-0432.CCR-13-0458
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2013; 2:e24238; PMID:23762803; http://dx.doi.org/10.4161/onci.24238
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: adoptive cell transfer for anticancer immunotherapy. Oncoimmunology 2014; 3:e28344; PMID:25050207; http://dx.doi.org/10.4161/onci.28344
  • Peng W, Lizee G, Hwu P. Blockade of the PD-1 pathway enhances the efficacy of adoptive cell therapy against cancer. Oncoimmunology 2013; 2:e22691; PMID:23524510; http://dx.doi.org/10.4161/onci.22691
  • Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, Yagita H, Overwijk WW, Lizée G, Radvanyi L, et al. PD-1 blockade enhances T-cell migration to tumors by elevating IFN-gamma inducible chemokines. Cancer Res 2012; 72:5209-18; PMID:22915761; http://dx.doi.org/10.1158/0008-5472.CAN-12-1187
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771; PMID:24286020; http://dx.doi.org/10.4161/onci.25771
  • Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, et al. Trial Watch: dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3: in press.
  • Madan RA, Mohebtash M, Arlen PM, Vergati M, Rauckhorst M, Steinberg SM, Tsang KY, Poole DJ, Parnes HL, Wright JJ, et al. Ipilimumab and a poxviral vaccine targeting prostate-specific antigen in metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol 2012; 13:501-8; PMID:22326924; http://dx.doi.org/10.1016/S1470-2045(12)70006-2
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39:38-48; PMID:23890062; http://dx.doi.org/10.1016/j.immuni.2013.07.004
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; PMID:23734328; http://dx.doi.org/10.4161/onci.23803
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185; PMID:24800178; http://dx.doi.org/10.4161/onci.28185
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; PMID:24498550; http://dx.doi.org/10.4161/onci.26621
  • Rosenblatt J, Glotzbecker B, Mills H, Vasir B, Tzachanis D, Levine JD, Joyce RM, Wellenstein K, Keefe W, Schickler M, et al. PD-1 blockade by CT-011, anti-PD-1 antibody, enhances ex vivo T-cell responses to autologous dendritic cellmyeloma fusion vaccine. J Immunother 2011; 34:409-18; PMID:21577144; http://dx.doi.org/10.1097/CJI.0b013e31821ca6ce
  • Weber JS, Kudchadkar RR, Gibney GT, Yu B, Cheng P, Martinez AJ, et al. Updated survival, toxicity, and biomarkers of nivolumab withwithout peptide vaccine in patients naive to, or progressed on, ipilimumab (IPI). ASCO Meeting Abstr 2014; 32:3009.
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G, et al. Trial watch: toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:24083080; http://dx.doi.org/10.4161/onci.25238
  • Nagato T, Celis E. A novel combinatorial cancer immunotherapy: poly-IC and blockade of the PD-1PD-L1 pathway. Oncoimmunology 2014; 3:e28440; PMID:25050210; http://dx.doi.org/10.4161/onci.28440
  • Barker CA, Postow MA, Khan SA, Beal K, Parhar PK, Yamada Y, Lee NY, Wolchok JD. Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol Res 2013; 1:92-8; PMID:24777500; http://dx.doi.org/10.1158/2326-6066.CIR-13-0082
  • Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, et al. Trial watch: radioimmunotherapy for oncological indications. Oncoimmunology 2014; 3: in press.
  • Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595; PMID:24319634
  • Silk AW, Bassetti MF, West BT, Tsien CI, Lao CD. Ipilimumab and radiation therapy for melanoma brain metastases. Cancer Med 2013; 2:899-906; PMID:24403263; http://dx.doi.org/10.1002/cam4.140
  • Hiniker SM, Chen DS, Knox SJ. Abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:2035; author reply -6; PMID:22621637; http://dx.doi.org/10.1056/NEJMc1203984
  • Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012; 366:925-31; PMID:22397654; http://dx.doi.org/10.1056/NEJMoa1112824
  • Demaria S, Pilones KA, Formenti SC, Dustin ML. Exploiting the stress response to radiation to sensitize poorly immunogenic tumors to anti-CTLA-4 treatment. Oncoimmunology 2013; 2:e23127; PMID:23802063; http://dx.doi.org/10.4161/onci.23127
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2013; 2:e23510; PMID:23687621; http://dx.doi.org/10.4161/onci.23510
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2014; 3:e27878; PMID:24800173; http://dx.doi.org/10.4161/onci.27878
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014
  • Cooper ZA, Frederick DT, Ahmed Z, Wargo JA. Combining checkpoint inhibitors and BRAF-targeted agents against metastatic melanoma. Oncoimmunology 2013; 2:e24320; PMID:23762807; http://dx.doi.org/10.4161/onci.24320
  • Amin A, Ernstoff MS, Infante JR, Heng DYC, Rini BI, Plimack ER, et al. A phase I study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) in combination with sunitinib, pazopanib, or ipilimumab in patients (pts) with metastatic renal cell carcinoma (mRCC). ASCO Meeting Abstr 2013; 31:TPS4593.
  • Amin A, Plimack ER, Infante JR, Ernstoff MS, Rini BI, McDermott DF, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with sunitinib or pazopanib in patients (pts) with metastatic renal cell carcinoma (mRCC). ASCO Meeting Abstr 2014; 32:5010.
  • Antonia SJ, Brahmer JR, Gettinger SN, Chow LQM, Juergens RA, Shepherd FA, et al. Nivolumab (anti-PD-1; BMS-936558, ONO-4538) in combination with platinum-based doublet chemotherapy (PT-DC) in advanced non-small cell lung cancer (NSCLC). ASCO Meeting Abstr 2014; 32:8113.
  • Flaherty K, Daud A, Weber JS, Sosman JA, Kim K, Gonzalez R, et al. Updated overall survival (OS) for BRF113220, a phase 1-2 study of dabrafenib (D) alone versus combined dabrafenib and trametinib (D+T) in pts with BRAF V600 mutation-positive (+) metastatic melanoma (MM). ASCO Meeting Abstr 2014; 32:9010.
  • McDermott DF, Infante JR, Voss MH, Motzer RJ, Haanen JBAG, Chowdhury S, et al. A phase III study to assess the safety and efficacy of pazopanib and MK-3475 in subjects with advanced renal cell carcinoma. ASCO Meeting Abstr 2014; 32:TPS4604.
  • Porkka K, Mauro MJ, Lipton JH, Mahon F-X, Strauss LC, Geese WJ, et al. An open-label, phase 1b, dose-escalation study (CA180-373) of dasatinib plus nivolumab, an investigational anti-programmed cell death 1 (PD-1) antibody, in patients (pts) with previously treated chronic myeloid leukemia (CML). ASCO Meeting Abstr 2014; 32:TPS7119.
  • Rizvi NA, Chow LQM, Borghaei H, Shen Y, Harbison C, Alaparthy S, et al. Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC. ASCO Meeting Abstr 2014; 32:8022.
  • Melcher A, Parato K, Rooney CM, Bell JC. Thunder and lightning: immunotherapy and oncolytic viruses collide. Mol Ther 2011; 19:1008-16; PMID:21505424; http://dx.doi.org/10.1038/mt.2011.65
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:25097804; http://dx.doi.org/10.4161/onci.28694
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2013; 2:e24612; PMID:23894720; http://dx.doi.org/10.4161/onci.24612
  • Zamarin D, Holmgaard RB, Subudhi SK, Park JS, Mansour M, Palese P, Merghoub T, Wolchok JD, Allison JP. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6:226ra32; PMID:24598590; http://dx.doi.org/10.1126/scitranslmed.3008095
  • Hodi FS, Lawrence D, Lezcano C, Wu X, Zhou J, Sasada T, Zeng W, Giobbie-Hurder A, Atkins MB, Ibrahim N, et al. Bevacizumab plus ipilimumab in patients with metastatic melanoma. Cancer Immunol Res 2014; 2:632-42; PMID:24838938; http://dx.doi.org/10.1158/2326-6066.CIR-14-0053
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/10.4161/onci.27048
  • Siegel DSD, Moreau P, Avigan D, Anderson KC, Reece DE, San Miguel J, et al. A phase 1 (Ph1) trial of MK-3475 combined with lenalidomide (Len) and low-dose dexamethasone (Dex) in patients (pts) with relapsedrefractory multiple myeloma (RRMM). ASCO Meeting Abstr 2014; 32:TPS3117.
  • Semeraro M, Vacchelli E, Eggermont A, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: lenalidomide-based immunochemotherapy. Oncoimmunology 2013; 2:e26494; PMID:24482747; http://dx.doi.org/10.4161/onci.26494
  • Semeraro M, Galluzzi L. Novel insights into the mechanism of action of lenalidomide. Oncoimmunology 2014; 3:e28386; PMID:25340011; http://dx.doi.org/10.4161/onci.28386
  • Hammers HJ, Plimack ER, Infante JR, Ernstoff MS, Rini BI, McDermott DF, et al. Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). ASCO Meeting Abstr 2014; 32:4504.
  • Sanborn RE, Sharfman WH, Segal NH, Hodi FS, Wolchok JD, Urba WJ, et al. A phase I dose-escalation and cohort expansion study of lirilumab (anti-KIR; BMS-986015) administered in combination with nivolumab (anti-PD-1; BMS-936558; ONO-4538) in patients (Pts) with advanced refractory solid tumors. ASCO Meeting Abstr 2013; 31:TPS3110.
  • Segal NH, Hodi FS, Sanborn RE, Gajewski T, Wolchok JD, Urba WJ, et al. A phase I dose escalation and cohort expansion study of lirilumab (anti-KIR; BMS-986015) in combination with nivolumab (anti-PD-1; BMS-936558, ONO-4538) in advanced solid tumors. ASCO Meeting Abstr 2014; 32:TPS3115.
  • Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. Oncoimmunology 2013; 2:e25396; PMID:23894726; http://dx.doi.org/10.4161/onci.25396
  • Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res 2014; 20:5064-74; PMID:24714771; http://dx.doi.org/10.1158/1078-0432.CCR-13-3271
  • Kakavand H, Scolyer RA, Thompson JF, Mann GJ. Identification of new prognostic biomarkers for Stage III metastatic melanoma patients. Oncoimmunology 2013; 2:e25564; PMID:24228228; http://dx.doi.org/10.4161/onci.25564
  • Rodolfo M, Castelli C, Rivoltini L. Immune response markers in sentinel nodes may predict melanoma progression. Oncoimmunology 2014; 3:e28498; PMID:25050216; http://dx.doi.org/10.4161/onci.28498
  • Morse MA, Osada T, Hobeika A, Patel S, Lyerly HK. Biomarkers and correlative endpoints for immunotherapy trials. Am Soc Clin Oncol Educ Book 2013; PMID:23714525; http://dx.doi.org/10.1200/EdBook_AM.2013.33.e287
  • Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, et al. Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol 2014; 11:509-24; PMID:25001465; http://dx.doi.org/10.1038/nrclinonc.2014.111
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009
  • Lee AF, Sieling PA, Lee DJ. Immune correlates of melanoma survival in adoptive cell therapy. Oncoimmunology 2013; 2:e22889; PMID:23525606; http://dx.doi.org/10.4161/onci.22889
  • Hodi FS, Ribas A, Daud A, Hamid O, Robert C, Kefford R, et al. Evaluation of immune-related response criteria (irRC) in patients (pts) with advanced melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. ASCO Meeting Abstr 2014; 32:3006.
  • Delyon J, Mateus C, Lambert T. Hemophilia A induced by ipilimumab. N Engl J Med 2011; 365:1747-8; PMID:22047582; http://dx.doi.org/10.1056/NEJMc1110923
  • Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 2009; 361:211-2; PMID:19587352; http://dx.doi.org/10.1056/NEJMc0904283
  • Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 2013; 368:1365-6; PMID:23550685; http://dx.doi.org/10.1056/NEJMc1302338
  • Baldo BA. Adverse events to monoclonal antibodies used for cancer therapy: focus on hypersensitivity responses. Oncoimmunology 2013; 2:e26333; PMID:24251081; http://dx.doi.org/10.4161/onci.26333

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.