2,880
Views
36
CrossRef citations to date
0
Altmetric
Review

Selective anti-cancer agents as anti-aging drugs

Pages 1092-1097 | Received 26 Nov 2013, Accepted 26 Nov 2013, Published online: 27 Nov 2013

Abstract

Recent groundbreaking discoveries have revealed that IGF-1, Ras, MEK, AMPK, TSC1/2, FOXO, PI3K, mTOR, S6K, and NFκB are involved in the aging process. This is remarkable because the same signaling molecules, oncoproteins and tumor suppressors, are well-known targets for cancer therapy. Furthermore, anti-cancer drugs aimed at some of these targets have been already developed. This arsenal could be potentially employed for anti-aging interventions (given that similar signaling molecules are involved in both cancer and aging). In cancer, intrinsic and acquired resistance, tumor heterogeneity, adaptation, and genetic instability of cancer cells all hinder cancer-directed therapy. But for anti-aging applications, these hurdles are irrelevant. For example, since anti-aging interventions should be aimed at normal postmitotic cells, no selection for resistance is expected. At low doses, certain agents may decelerate aging and age-related diseases. Importantly, deceleration of aging can in turn postpone cancer, which is an age-related disease.

Introduction

In the last three decades, hundreds of potential cancer-related targets (oncotargets) have been identified and therapeutics developed. Some of these oncotargeted agents have been approved for cancer therapy. The first and still one of the most spectacular examples is imatinib (Gleevec), targeting Bcr-Abl, PDGFR, and c-kit (Ref).Citation1-Citation5 The clinical use of imatinib revealed limitations of oncotargeted therapy such as selection for resistance,Citation1,Citation2,Citation6 which is actually predictable on theoretical grounds.Citation7 Furthermore, the resistance to oncotargeted drugs is often coupled with highly malignant and aggressive cancer behavior.Citation8,Citation9 This is accompanied by cancer progression. There are several strategies to overcome some of these obstaclesCitation4,Citation10,Citation11 and even to exploit them.Citation12,Citation13 Here I discuss that oncotargeted drugs can be investigated for the suppression of the aging process (gerosuppression). For example, selective anti-cancer agents prolong lifespan in Drosophila.Citation14 At first glance, this may seem paradoxical, given that (a) classic anti-cancer drugs cause DNA and protein damage and (b) aging is believed to be driven by the accumulation of damage. However, oncotargeted agents do not cause DNA or protein damage but instead inhibit signal transduction. Second, the evidence emerges that aging is not driven by damage but instead is driven by sensing-signaling pathways governing cellular metabolism and growth.Citation15-Citation17 And these signaling pathways are identical to oncogenic pathways that drive cancer.Citation18 Oncotargets are involved in cellular geroconversion, organismal longevity, and age-related diseases.

Cellular Geroconversion

Nutrients, growth factors, inflammatory cytokines, insulin, and other hormones activate the mTOR (mammalian target of rapamycin) pathway.Citation19-Citation23 When the cell cycle is arrested, then overactivated MAPK and mTOR pathways cause cellular growth in size, leading to a senescent phenotype.Citation24 The senescent phenotype is characterized by a large, flat cell morphology (hypertrophy), cellular hyperfunctions such as hypersecretion and proinflammation, and an increased lysosomal activity and lipid accumulation.Citation24-Citation33 Senescent cells have increased levels of cyclin D1. Despite hypermitogenic drive, the replicative (regenerative) potential is low.Citation24,Citation34 The conversion from quiescence or reversible cell cycle arrest to senescence is called gerogenic conversion (geroconversion).Citation18,Citation35 Inhibitors of the PI-3K/mTOR pathway suppress geroconversion.Citation34-Citation42 Thus, overstimulation of quiescent cells drives geroconversion. In the organism, geroconversion is associated with alterations of homeostasis, which accelerate age-related diseases, leading to organismal death.Citation43-Citation46

Oncotargets and Longevity

Numerous genes affect aging in yeast, worm, flies, and mammals. Inactivation of Ras, PI-3K, TOR, and S6K increases lifespan. Pro-aging pathways are antagonized by gerosuppressors such as PTEN, AMPK, TSC1/2, sirtuins, and p53, which are also known as tumor suppressors.Citation47-Citation63 The IGF-1/PI3K/mTOR/S6K pathway is involved in age-related diseases such as atherosclerosis, organ hypertrophy, diabetic complications, and neurodegeneration.Citation64-Citation72

Common Targets in Cancer and Aging

Numerous agents targeting mTOR, PI-3K, growth factor receptors, and related tyrosine kinases, Ras, Raf, and B-Raf, S6K, MEK1/2 have been tested to treat cancer.Citation73-Citation86 The mTOR pathway is almost obligatorily activated in cancer.Citation18 When the cell cycle is blocked, then mTOR drives geroconversion. When the cell cycle is activated, mTOR drives growth and is involved in malignant phenotype. Therefore, in cancer, the cell cycle control should be disabled, for example, due to the loss of p53, p16, p27, or Rb. Noteworthy, p53 inhibits both cell cycle progression and the mTOR pathway.Citation18,Citation36,Citation87-Citation90 Rapalogs (rapamycin and its analogs), which not only inhibit mTOR but also slow down the cell cycle, partially substitute for p53.Citation18

Rapalogs

Rapamycin (sirolimus) and their analogs (everolimus, temsirolimus, and deforolimus) bind FKBP12 and thus inhibit mTOR complex 1 (mTORC1).Citation91-Citation93 Rapalogs are anti-cancer drugs.Citation20,Citation22,Citation94-Citation103 Rapamycin (sirolimus) and everolimus decrease cancer incidence in renal transplant patients.Citation104-Citation107

Temsirolimus and everolimus are approved for the treatment of renal cell carcinoma, breast cancer, progressive neuroendocrine tumors of pancreatic origin, and subependymal giant cell astrocytoma and are investigated for numerous other malignancies.Citation94-Citation111 In addition, ATP-competitive inhibitors of the TOR kinase undergo clinical trials. Unlike rapalogs, they inhibit both mTOR complex 1 and mTOR complex 2 and also rapamycin-independent functions of mTORC1.Citation79,Citation112-Citation121

Akt and PI3K Inhibitors

Knockout of PI3K extends the lifespan of C. elegans almost 10-fold.Citation122 And PI3K is one of the most promising oncotargetsCitation123-Citation131 Mutations in PI3Kα facilitate invasion and metastasis. Small molecule inhibitors of PI3Kα prevented metastasis formation in mice but not xenografts or primary intra-abdominal tumors.Citation132 Perifosine, an Akt inhibitor, can be safely administered, but it lacks sufficient anti-cancer efficacy in cancer patients.Citation133-Citation135

MEK and Raf Inhibitors

Trametinib, an MEK inhibitor, has been approved for treatment of melanoma.Citation136 Trametinib, as compared with chemotherapy, improved rates of progression-free and overall survival among patients who had metastatic melanoma with a BRAF (V600E or V600K) mutation.Citation137 MEK inhibitors also undergo numerous clinical trials alone and in combinations. Other MEK inhibitors in clinical development include selumetinib, pimasertib, refametinib, PD-0325901, TAK733, MEK162, RO5126766, WX-554, RO4987655, GDC-0973, and AZD8330.Citation136,Citation138,Citation139 Also, MEK inhibitors can be combined with oncotargeted agents.Citation140,Citation141 Resistance and cross-resistance is commonCitation142-Citation144

Although BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. Resistance to therapy with BRAF kinase inhibitors is associated with reactivation of the MAPK pathway. Combined treatment with dabrafenib, a BRAF inhibitor, and trametinib, a MEK inhibitor, can improve progression-free survival.Citation145 However, BRAF-inhibitor resistance mechanisms may also confer resistance to MEK-inhibitor and combined therapy.Citation142,Citation146,Citation147 The resistance may be associated with MAPK and S6 kinase activation. A combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 can inhibit tumor growth.Citation143 It is important to note that monotherapy with RAF inhibitors vemurafenib and sorafenib may cause cutaneous epithelial proliferations (keratosis pilaris, seborrheic keratosis, verruca vulgaris, actinic keratosis, keratoacanthoma, and squamous cell carcinoma).Citation148 While RAF inhibitors are effective against melanomas with BRAF V600E mutations, they may induce keratoacanthomas and cutaneous squamous cell carcinomas by selecting for RAS-primed cells. Inhibition of MEK together with RAF prevents formation of these tumors.Citation149 Thus, due to potential selection for Ras-mutant cells, Raf inhibitors unlikely can be used for anti-aging applications.

Cancer Prevention

The suggestion that targeted agents can be used for cancer prevention is not novel. Yet, it was thought that these cancer-specific drugs should target specifically pre-malignant and malignant cells. Here I discuss a very different approach. In theory, certain oncotargeted agents may prevent cancer, if they slow down the aging process and suppress geroconversion. Importantly, such approach does not require targeting malignant cells directly. Chemoprevention due to gerosuppression does not depend on mutational profile of cancer cells or on any features of cancer cells. For example, if rapamycin suppresses aging, it will prevent any cancer including those with p53 and Rb mutations or ErbB activation. In fact, rapamycin prevents cancer in p53-deficient and Rb-deficient miceCitation150-Citation153 as well as common cancers in normal mice.Citation154-Citation160 Metformin, which affects the mTOR pathway and slows aging, also prevents a variety of cancers.Citation161-Citation165 Cellular aging predisposes to cancerCitation18,Citation166-Citation169 and CR can decrease cellular senescence.

Calorie restriction (CR) decelerates aging. CR delays cancer in humans and other mammals. Anything that decelerates aging (for example calorie restriction and genetic manipulations) also postpones cancer.Citation170-Citation175 This predicts that drugs that slow down the aging process will delay or prevent cancer.Citation176

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

10.4161/cbt.XXXX

References

  • Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 2001; 344:1038 - 42; http://dx.doi.org/10.1056/NEJM200104053441402; PMID: 11287973
  • Druker BJ. Translation of the Philadelphia chromosome into therapy for CML. Blood 2008; 112:4808 - 17; http://dx.doi.org/10.1182/blood-2008-07-077958; PMID: 19064740
  • Druker BJ. Perspectives on the development of imatinib and the future of cancer research. Nat Med 2009; 15:1149 - 52; http://dx.doi.org/10.1038/nm1009-1149; PMID: 19812576
  • Sawyers CL. The 2011 Gordon Wilson Lecture: overcoming resistance to targeted cancer drugs. Trans Am Clin Climatol Assoc 2012; 123:114 - 23, discussion 123-5; PMID: 23303979
  • Cozma D, Thomas-Tikhonenko A. Kit-activating mutations in AML: lessons from PU.1-induced murine erythroleukemia. Cancer Biol Ther 2006; 5:579 - 81; http://dx.doi.org/10.4161/cbt.5.6.2873; PMID: 16760643
  • Burger H, van Tol H, Brok M, Wiemer EA, de Bruijn EA, Guetens G, de Boeck G, Sparreboom A, Verweij J, Nooter K. Chronic imatinib mesylate exposure leads to reduced intracellular drug accumulation by induction of the ABCG2 (BCRP) and ABCB1 (MDR1) drug transport pumps. Cancer Biol Ther 2005; 4:747 - 52; http://dx.doi.org/10.4161/cbt.4.7.1826; PMID: 15970668
  • Blagosklonny MV. STI-571 must select for drug-resistant cells but ‘no cell breathes fire out of its nostrils like a dragon’. Leukemia 2002; 16:570 - 2; http://dx.doi.org/10.1038/sj.leu.2402409; PMID: 11960334
  • Blagosklonny MV. Oncogenic resistance to growth-limiting conditions. Nat Rev Cancer 2002; 2:221 - 5; http://dx.doi.org/10.1038/nrc743; PMID: 11990858
  • Blagosklonny MV. Antiangiogenic therapy and tumor progression. Cancer Cell 2004; 5:13 - 7; http://dx.doi.org/10.1016/S1535-6108(03)00336-2; PMID: 14749122
  • Glickman MS, Sawyers CL. Converting cancer therapies into cures: lessons from infectious diseases. Cell 2012; 148:1089 - 98; http://dx.doi.org/10.1016/j.cell.2012.02.015; PMID: 22424221
  • Bozic I, Reiter JG, Allen B, Antal T, Chatterjee K, Shah P, Moon YS, Yaqubie A, Kelly N, Le DT, et al. Evolutionary dynamics of cancer in response to targeted combination therapy. Elife 2013; 2:e00747; http://dx.doi.org/10.7554/eLife.00747; PMID: 23805382
  • Blagosklonny MV. Antagonistic drug combinations that select against drug resistance: from bacteria to cancer. Cancer Biol Ther 2007; 6:1013 - 4; http://dx.doi.org/10.4161/cbt.6.7.4340; PMID: 17646740
  • Blagosklonny MV. NCI’s provocative questions on cancer: some answers to ignite discussion. Oncotarget 2011; 2:1352 - 67; PMID: 22267462
  • Danilov A, Shaposhnikov M, Plyusnina E, Kogan V, Fedichev P, Moskalev A. Selective anticancer agents suppress aging in Drosophila. Oncotarget 2013; 4:1507 - 26; PMID: 24096697
  • Doonan R, McElwee JJ, Matthijssens F, Walker GA, Houthoofd K, Back P, Matscheski A, Vanfleteren JR, Gems D. Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans. Genes Dev 2008; 22:3236 - 41; http://dx.doi.org/10.1101/gad.504808; PMID: 19056880
  • Gems D, Partridge L. Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 2013; 75:621 - 44; http://dx.doi.org/10.1146/annurev-physiol-030212-183712; PMID: 23190075
  • Blagosklonny MV. Answering the ultimate question “what is the proximal cause of aging?”. Aging (Albany NY) 2012; 4:861 - 77; PMID: 23425777
  • Blagosklonny MV. Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 2011; 3:1130 - 41; PMID: 22246147
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124:471 - 84; http://dx.doi.org/10.1016/j.cell.2006.01.016; PMID: 16469695
  • Cornu M, Albert V, Hall MN. mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 2013; 23:53 - 62; http://dx.doi.org/10.1016/j.gde.2012.12.005; PMID: 23317514
  • Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011; 189:1177 - 201; http://dx.doi.org/10.1534/genetics.111.133363; PMID: 22174183
  • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21 - 35; http://dx.doi.org/10.1038/nrm3025; PMID: 21157483
  • Hands SL, Proud CG, Wyttenbach A. mTOR’s role in ageing: protein synthesis or autophagy?. Aging (Albany NY) 2009; 1:586 - 97; PMID: 20157541
  • Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging. Aging (Albany NY) 2012; 4:159 - 65; PMID: 22394614
  • Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, Campisi J. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 2009; 1:402 - 11; PMID: 20148189
  • Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6:2853 - 68; http://dx.doi.org/10.1371/journal.pbio.0060301; PMID: 19053174
  • Blagosklonny MV. Tumor suppression by p53 without apoptosis and senescence: conundrum or rapalog-like gerosuppression?. Aging (Albany NY) 2012; 4:450 - 5; PMID: 22869016
  • Driscoll MK, Albanese JL, Xiong ZM, Mailman M, Losert W, Cao K. Automated image analysis of nuclear shape: what can we learn from a prematurely aged cell?. Aging (Albany NY) 2012; 4:119 - 32; PMID: 22354768
  • Hubackova S, Krejcikova K, Bartek J, Hodny Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging (Albany NY) 2012; 4:932 - 51; PMID: 23385065
  • Tominaga-Yamanaka K, Abdelmohsen K, Martindale JL, Yang X, Taub DD, Gorospe M. NF90 coordinately represses the senescence-associated secretory phenotype. Aging (Albany NY) 2012; 4:695 - 708; PMID: 23117626
  • Cahu J, Bustany S, Sola B. Senescence-associated secretory phenotype favors the emergence of cancer stem-like cells. Cell Death Dis 2012; 3:e446; http://dx.doi.org/10.1038/cddis.2012.183; PMID: 23254289
  • Georgakopoulou EA, Tsimaratou K, Evangelou K, Fernandez Marcos PJ, Zoumpourlis V, Trougakos IP, Kletsas D, Bartek J, Serrano M, Gorgoulis VG. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 2013; 5:37 - 50; PMID: 23449538
  • Salminen A, Kaarniranta K, Kauppinen A. Inflammaging: disturbed interplay between autophagy and inflammasomes. Aging (Albany NY) 2012; 4:166 - 75; PMID: 22411934
  • Leontieva OV, Demidenko ZN, Blagosklonny MV. MEK drives cyclin D1 hyperelevation during geroconversion. Cell Death Differ 2013; 20:1241 - 9; http://dx.doi.org/10.1038/cdd.2013.86; PMID: 23852369
  • Leontieva OV, Blagosklonny MV. DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence. Aging (Albany NY) 2010; 2:924 - 35; PMID: 21212465
  • Demidenko ZN, Korotchkina LG, Gudkov AV, Blagosklonny MV. Paradoxical suppression of cellular senescence by p53. Proc Natl Acad Sci U S A 2010; 107:9660 - 4; http://dx.doi.org/10.1073/pnas.1002298107; PMID: 20457898
  • Leontieva OV, Natarajan V, Demidenko ZN, Burdelya LG, Gudkov AV, Blagosklonny MV. Hypoxia suppresses conversion from proliferative arrest to cellular senescence. Proc Natl Acad Sci U S A 2012; 109:13314 - 8; http://dx.doi.org/10.1073/pnas.1205690109; PMID: 22847439
  • Mercier I, Camacho J, Titchen K, Gonzales DM, Quann K, Bryant KG, Molchansky A, Milliman JN, Whitaker-Menezes D, Sotgia F, et al. Caveolin-1 and accelerated host aging in the breast tumor microenvironment: chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol 2012; 181:278 - 93; http://dx.doi.org/10.1016/j.ajpath.2012.03.017; PMID: 22698676
  • Dulic V. Be quiet and you’ll keep young: does mTOR underlie p53 action in protecting against senescence by favoring quiescence?. Aging (Albany NY) 2011; 3:3 - 4; PMID: 21248373
  • Zhao H, Halicka HD, Li J, Darzynkiewicz Z. Berberine suppresses gero-conversion from cell cycle arrest to senescence. Aging (Albany NY) 2013; 5:623 - 36; PMID: 23974852
  • Gan B, DePinho RA. mTORC1 signaling governs hematopoietic stem cell quiescence. Cell Cycle 2009; 8:1003 - 6; http://dx.doi.org/10.4161/cc.8.7.8045; PMID: 19270523
  • Kofman AE, McGraw MR, Payne CJ. Rapamycin increases oxidative stress response gene expression in adult stem cells. Aging (Albany NY) 2012; 4:279 - 89; PMID: 22529334
  • Blagosklonny MV. Hormesis does not make sense except in the light of TOR-driven aging. Aging (Albany NY) 2011; 3:1051 - 62; PMID: 22166724
  • Blagosklonny MV. Prospective treatment of age-related diseases by slowing down aging. Am J Pathol 2012; 181:1142 - 6; http://dx.doi.org/10.1016/j.ajpath.2012.06.024; PMID: 22841821
  • Blagosklonny MV. Once again on rapamycin-induced insulin resistance and longevity: despite of or owing to. Aging (Albany NY) 2012; 4:350 - 8; PMID: 22683661
  • Blagosklonny MV. How to save Medicare: the anti-aging remedy. Aging (Albany NY) 2012; 4:547 - 52; PMID: 22915707
  • Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature 2000; 408:255 - 62; http://dx.doi.org/10.1038/35041700; PMID: 11089983
  • Pinkston JM, Garigan D, Hansen M, Kenyon C. Mutations that increase the life span of C. elegans inhibit tumor growth. Science 2006; 313:971 - 5; http://dx.doi.org/10.1126/science.1121908; PMID: 16917064
  • Sinclair DA, Guarente L. Unlocking the secrets of longevity genes. Sci Am 2006; 294:48 - 51, 54-7; http://dx.doi.org/10.1038/scientificamerican0306-48; PMID: 16502611
  • Kaeberlein M, Kennedy BK. Hot topics in aging research: protein translation and TOR signaling, 2010. Aging Cell 2011; 10:185 - 90; http://dx.doi.org/10.1111/j.1474-9726.2010.00665.x; PMID: 21176090
  • Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK. The TOR pathway comes of age. Biochim Biophys Acta 2009; 1790:1067 - 74; http://dx.doi.org/10.1016/j.bbagen.2009.06.007; PMID: 19539012
  • Naiman S, Kanfi Y, Cohen HY. Sirtuins as regulators of mammalian aging. Aging (Albany NY) 2012; 4:521 - 2; PMID: 22915706
  • Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, et al. Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 2013; 12:851 - 62; http://dx.doi.org/10.1111/acel.12109; PMID: 23734717
  • Rongo C. Epidermal growth factor and aging: a signaling molecule reveals a new eye opening function. Aging (Albany NY) 2011; 3:896 - 905; PMID: 21931179
  • Williams TW, Dumas KJ, Hu PJ. EAK proteins: novel conserved regulators of C. elegans lifespan. Aging (Albany NY) 2010; 2:742 - 7; PMID: 20975207
  • Polymenis M, Kennedy BK. Chronological and replicative lifespan in yeast: do they meet in the middle?. Cell Cycle 2012; 11:3531 - 2; http://dx.doi.org/10.4161/cc.22041; PMID: 22951539
  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F, et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009; 326:140 - 4; http://dx.doi.org/10.1126/science.1177221; PMID: 19797661
  • Partridge L, Gems D. Mechanisms of ageing: public or private?. Nat Rev Genet 2002; 3:165 - 75; http://dx.doi.org/10.1038/nrg753; PMID: 11972154
  • Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature 2013; 493:338 - 45; http://dx.doi.org/10.1038/nature11861; PMID: 23325216
  • Kaeberlein M. Longevity and aging. F1000Prime Rep 2013; 5:5; http://dx.doi.org/10.12703/P5-5; PMID: 23513177
  • Ramadori G, Coppari R. Does hypothalamic SIRT1 regulate aging?. Aging (Albany NY) 2011; 3:325 - 8; PMID: 21464518
  • Kenyon CJ. The genetics of ageing. Nature 2010; 464:504 - 12; http://dx.doi.org/10.1038/nature08980; PMID: 20336132
  • Borrás C, Monleón D, López-Grueso R, Gambini J, Orlando L, Pallardó FV, Santos E, Viña J, Font de Mora J. RasGrf1 deficiency delays aging in mice. Aging (Albany NY) 2011; 3:262 - 76; PMID: 21422498
  • Blagosklonny MV. Aging and immortality: quasi-programmed senescence and its pharmacologic inhibition. Cell Cycle 2006; 5:2087 - 102; http://dx.doi.org/10.4161/cc.5.18.3288; PMID: 17012837
  • Blagosklonny MV. An anti-aging drug today: from senescence-promoting genes to anti-aging pill. Drug Discov Today 2007; 12:218 - 24; http://dx.doi.org/10.1016/j.drudis.2007.01.004; PMID: 17331886
  • Tsang CK, Qi H, Liu LF, Zheng XFS. Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 2007; 12:112 - 24; http://dx.doi.org/10.1016/j.drudis.2006.12.008; PMID: 17275731
  • Dazert E, Hall MN. mTOR signaling in disease. Curr Opin Cell Biol 2011; 23:744 - 55; http://dx.doi.org/10.1016/j.ceb.2011.09.003; PMID: 21963299
  • Zhao C, Vollrath D. mTOR pathway activation in age-related retinal disease. Aging (Albany NY) 2011; 3:346 - 7; PMID: 21483039
  • Nair S, Ren J. Autophagy and cardiovascular aging: lesson learned from rapamycin. Cell Cycle 2012; 11:2092 - 9; http://dx.doi.org/10.4161/cc.20317; PMID: 22580468
  • Ye L, Widlund AL, Sims CA, Lamming DW, Guan Y, Davis JG, Sabatini DM, Harrison DE, Vang O, Baur JA. Rapamycin doses sufficient to extend lifespan do not compromise muscle mitochondrial content or endurance. Aging (Albany NY) 2013; 5:539 - 50; PMID: 23929887
  • Blagosklonny MV. Why men age faster but reproduce longer than women: mTOR and evolutionary perspectives. Aging (Albany NY) 2010; 2:265 - 73; PMID: 20519781
  • Blagosklonny MV. Validation of anti-aging drugs by treating age-related diseases. Aging (Albany NY) 2009; 1:281 - 8; PMID: 20157517
  • Eide CA, Druker BJ, O’Hare T. Kinase inhibitor therapy in CML: it’s what’s inside that counts. Oncotarget 2013; 4:1332 - 3; PMID: 23934763
  • Engelman JA, Chen L, Tan X, Crosby K, Guimaraes AR, Upadhyay R, Maira M, McNamara K, Perera SA, Song Y, et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat Med 2008; 14:1351 - 6; http://dx.doi.org/10.1038/nm.1890; PMID: 19029981
  • Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T, Liu Y, Tupper T, Ouyang J, Li J, et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012; 483:613 - 7; http://dx.doi.org/10.1038/nature10937; PMID: 22425996
  • Hou J, Lam F, Proud C, Wang S. Targeting Mnks for cancer therapy. Oncotarget 2012; 3:118 - 31; PMID: 22392765
  • Jang S, Atkins MB. Which drug, and when, for patients with BRAF-mutant melanoma?. Lancet Oncol 2013; 14:e60 - 9; http://dx.doi.org/10.1016/S1470-2045(12)70539-9; PMID: 23369684
  • Nucera C, Lawler J, Hodin R, Parangi S. The BRAFV600E mutation: what is it really orchestrating in thyroid cancer?. Oncotarget 2010; 1:751 - 6; PMID: 21321384
  • Robert G, Jullian V, Jacquel A, Ginet C, Dufies M, Torino S, Pottier A, Peyrade F, Tartare-Deckert S, Bourdy G, et al. Simalikalactone E (SkE), a new weapon in the armamentarium of drugs targeting cancers that exhibit constitutive activation of the ERK pathway. Oncotarget 2012; 3:1688 - 99; PMID: 23518796
  • Shih HJ, Chen HH, Chen YA, Wu MH, Liou GG, Chang WW, Chen L, Wang LH, Hsu HL. Targeting MCT-1 oncogene inhibits Shc pathway and xenograft tumorigenicity. Oncotarget 2012; 3:1401 - 15; PMID: 23211466
  • Subbiah IM, Subbiah V, Tsimberidou AM, Naing A, Kaseb AO, Javle M, Fu S, Hong DS, Piha-Paul S, Wheler JJ, et al. Targeted therapy of advanced gallbladder cancer and cholangiocarcinoma with aggressive biology: eliciting early response signals from phase 1 trials. Oncotarget 2013; 4:153 - 62; PMID: 23847722
  • Guo Y, Shan Q, Gong Y, Lin J, Yang X, Zhou R. Oridonin in combination with imatinib exerts synergetic anti-leukemia effect in Ph+ acute lymphoblastic leukemia cells in vitro by inhibiting activation of LYN/mTOR signaling pathway. Cancer Biol Ther 2012; 13:1244 - 54; http://dx.doi.org/10.4161/cbt.21460; PMID: 22895079
  • Ericson K, Gan C, Cheong I, Rago C, Samuels Y, Velculescu VE, Kinzler KW, Huso DL, Vogelstein B, Papadopoulos N. Genetic inactivation of AKT1, AKT2, and PDPK1 in human colorectal cancer cells clarifies their roles in tumor growth regulation. Proc Natl Acad Sci U S A 2010; 107:2598 - 603; http://dx.doi.org/10.1073/pnas.0914018107; PMID: 20133737
  • Deming DA, Leystra AA, Farhoud M, Nettekoven L, Clipson L, Albrecht D, Washington MK, Sullivan R, Weichert JP, Halberg RB. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers. PLoS One 2013; 8:e60709; http://dx.doi.org/10.1371/journal.pone.0060709; PMID: 23593290
  • Chung S, Suzuki H, Miyamoto T, Takamatsu N, Tatsuguchi A, Ueda K, Kijima K, Nakamura Y, Matsuo Y. Development of an orally-administrative MELK-targeting inhibitor that suppresses the growth of various types of human cancer. Oncotarget 2012; 3:1629 - 40; PMID: 23283305
  • Weber GL, Parat MO, Binder ZA, Gallia GL, Riggins GJ. Abrogation of PIK3CA or PIK3R1 reduces proliferation, migration, and invasion in glioblastoma multiforme cells. Oncotarget 2011; 2:833 - 49; PMID: 22064833
  • Feng Z, Levine AJ. The regulation of energy metabolism and the IGF-1/mTOR pathways by the p53 protein. Trends Cell Biol 2010; 20:427 - 34; http://dx.doi.org/10.1016/j.tcb.2010.03.004; PMID: 20399660
  • Levine AJ, Feng Z, Mak TW, You H, Jin S. Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 2006; 20:267 - 75; http://dx.doi.org/10.1101/gad.1363206; PMID: 16452501
  • Korotchkina LG, Leontieva OV, Bukreeva EI, Demidenko ZN, Gudkov AV, Blagosklonny MV. The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway. Aging (Albany NY) 2010; 2:344 - 52; PMID: 20606252
  • Vigneron A, Vousden KH. p53, ROS and senescence in the control of aging. Aging (Albany NY) 2010; 2:471 - 4; PMID: 20729567
  • Hall MN. Talks about TORCs: recent advancesin target of rapamycin signalling. On mTOR nomenclature. Biochem Soc Trans 2013; 41:887 - 8; http://dx.doi.org/10.1042/BST20130092; PMID: 23863150
  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002; 10:457 - 68; http://dx.doi.org/10.1016/S1097-2765(02)00636-6; PMID: 12408816
  • Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, Sabatini DM. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013; 341:1236566; http://dx.doi.org/10.1126/science.1236566; PMID: 23888043
  • Garber K. Rapamycin’s resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst 2001; 93:1517 - 9; http://dx.doi.org/10.1093/jnci/93.20.1517; PMID: 11604470
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12:9 - 22; http://dx.doi.org/10.1016/j.ccr.2007.05.008; PMID: 17613433
  • Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, Kapoor A, Staroslawska E, Sosman J, McDermott D, Bodrogi I, et al, Global ARCC Trial. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 2007; 356:2271 - 81; http://dx.doi.org/10.1056/NEJMoa066838; PMID: 17538086
  • Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 2006; 5:671 - 88; http://dx.doi.org/10.1038/nrd2062; PMID: 16883305
  • Bjornsti MA, Houghton PJ. The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004; 4:335 - 48; http://dx.doi.org/10.1038/nrc1362; PMID: 15122205
  • Altman JK, Sassano A, Platanias LC. Targeting mTOR for the treatment of AML. New agents and new directions. Oncotarget 2011; 2:510 - 7; PMID: 21680954
  • Chiarini F, Lonetti A, Teti G, Orsini E, Bressanin D, Cappellini A, Ricci F, Tazzari PL, Ognibene A, Falconi M, et al. A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia. Oncotarget 2012; 3:1615 - 28; PMID: 23271044
  • Janes MR, Fruman DA. Targeting TOR dependence in cancer. Oncotarget 2010; 1:69 - 76; PMID: 20657741
  • Janku F, Wheler JJ, Naing A, Stepanek VM, Falchook GS, Fu S, Garrido-Laguna I, Tsimberidou AM, Piha-Paul SA, Moulder SL, et al. PIK3CA mutations in advanced cancers: characteristics and outcomes. Oncotarget 2012; 3:1566 - 75; PMID: 23248156
  • Blagosklonny MV. Rapalogs in cancer prevention: anti-aging or anticancer?. Cancer Biol Ther 2012; 13:1349 - 54; http://dx.doi.org/10.4161/cbt.22859; PMID: 23151465
  • Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, Claesson K, Stallone G, Russ G, Rostaing L, et al. Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol 2006; 17:581 - 9; http://dx.doi.org/10.1681/ASN.2005090993; PMID: 16434506
  • Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G, Ranieri E, Gesualdo L, Schena FP, Grandaliano G. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 2005; 352:1317 - 23; http://dx.doi.org/10.1056/NEJMoa042831; PMID: 15800227
  • Mártinez JM, Pulido LB, Bellido CB, Usero DD, Aguilar LT, Moreno JL, Artacho GS, Díez-Canedo JS, Gómez LM, Bravo MA. Rescue immunosuppression with mammalian target of rapamycin inhibitor drugs in liver transplantation. Transplant Proc 2010; 42:641 - 3; http://dx.doi.org/10.1016/j.transproceed.2010.02.011; PMID: 20304212
  • Euvrard S, Morelon E, Rostaing L, Goffin E, Brocard A, Tromme I, Broeders N, del Marmol V, Chatelet V, Dompmartin A, et al, TUMORAPA Study Group. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med 2012; 367:329 - 39; http://dx.doi.org/10.1056/NEJMoa1204166; PMID: 22830463
  • Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, et al. Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 2012; 366:520 - 9; http://dx.doi.org/10.1056/NEJMoa1109653; PMID: 22149876
  • Coppin C, Kollmannsberger C, Le L, Porzsolt F, Wilt TJ. Targeted therapy for advanced renal cell cancer (RCC): a Cochrane systematic review of published randomised trials. BJU Int 2011; 108:1556 - 63; http://dx.doi.org/10.1111/j.1464-410X.2011.10629.x; PMID: 21952069
  • Major P. Potential of mTOR inhibitors for the treatment of subependymal giant cell astrocytomas in tuberous sclerosis complex. Aging (Albany NY) 2011; 3:189 - 91; PMID: 21415462
  • Masiello D, Mohi MG, McKnight NC, Smith B, Neel BG, Balk SP, Bubley GJ. Combining an mTOR antagonist and receptor tyrosine kinase inhibitors for the treatment of prostate cancer. Cancer Biol Ther 2007; 6:195 - 201; http://dx.doi.org/10.4161/cbt.6.2.3588; PMID: 17218776
  • Francipane MG, Lagasse E. Selective targeting of human colon cancer stem-like cells by the mTOR inhibitor Torin-1. Oncotarget 2013; Forthcoming PMID: 24185040
  • Shor B, Gibbons JJ, Abraham RT, Yu K. Targeting mTOR globally in cancer: thinking beyond rapamycin. Cell Cycle 2009; 8:3831 - 7; http://dx.doi.org/10.4161/cc.8.23.10070; PMID: 19901542
  • Don AS, Zheng XF. Recent clinical trials of mTOR-targeted cancer therapies. Rev Recent Clin Trials 2011; 6:24 - 35; http://dx.doi.org/10.2174/157488711793980147; PMID: 20868343
  • De P, Miskimins K, Dey N, Leyland-Jones B. Promise of rapalogues versus mTOR kinase inhibitors in subset specific breast cancer: old targets new hope. Cancer Treat Rev 2013; 39:403 - 12; http://dx.doi.org/10.1016/j.ctrv.2012.12.002; PMID: 23352077
  • Zhang Y, Zheng XF. mTOR-independent 4E-BP1 phosphorylation is associated with cancer resistance to mTOR kinase inhibitors. Cell Cycle 2012; 11:594 - 603; http://dx.doi.org/10.4161/cc.11.3.19096; PMID: 22262166
  • Keniry M, Parsons R. mTOR inhibition, the second generation: ATP-competitive mTOR inhibitor initiates unexpected receptor tyrosine kinase-driven feedback loop. Cancer Discov 2011; 1:203 - 4; http://dx.doi.org/10.1158/2159-8290.CD-11-0157; PMID: 22586570
  • Liu Q, Kang SA, Thoreen CC, Hur W, Wang J, Chang JW, Markhard A, Zhang J, Sim T, Sabatini DM, et al. Development of ATP-competitive mTOR inhibitors. Methods Mol Biol 2012; 821:447 - 60; http://dx.doi.org/10.1007/978-1-61779-430-8_29; PMID: 22125084
  • Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232 - 40; http://dx.doi.org/10.1158/0008-5472.CAN-09-0299; PMID: 19584280
  • Gilley R, Balmanno K, Cope CL, Cook SJ. Adaptation to chronic mTOR inhibition in cancer and in aging. Biochem Soc Trans 2013; 41:956 - 61; http://dx.doi.org/10.1042/BST20130080; PMID: 23863163
  • Carayol N, Vakana E, Sassano A, Kaur S, Goussetis DJ, Glaser H, Druker BJ, Donato NJ, Altman JK, Barr S, et al. Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells. Proc Natl Acad Sci U S A 2010; 107:12469 - 74; http://dx.doi.org/10.1073/pnas.1005114107; PMID: 20616057
  • Ayyadevara S, Alla R, Thaden JJ, Shmookler Reis RJ. Remarkable longevity and stress resistance of nematode PI3K-null mutants. Aging Cell 2008; 7:13 - 22; http://dx.doi.org/10.1111/j.1474-9726.2007.00348.x; PMID: 17996009
  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005; 4:988 - 1004; http://dx.doi.org/10.1038/nrd1902; PMID: 16341064
  • Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer 2006; 6:184 - 92; http://dx.doi.org/10.1038/nrc1819; PMID: 16453012
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene 2008; 27:5497 - 510; http://dx.doi.org/10.1038/onc.2008.245; PMID: 18794884
  • Liu D, Hou P, Liu Z, Wu G, Xing M. Genetic alterations in the phosphoinositide 3-kinase/Akt signaling pathway confer sensitivity of thyroid cancer cells to therapeutic targeting of Akt and mammalian target of rapamycin. Cancer Res 2009; 69:7311 - 9; http://dx.doi.org/10.1158/0008-5472.CAN-09-1077; PMID: 19706758
  • Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 2009; 8:627 - 44; http://dx.doi.org/10.1038/nrd2926; PMID: 19644473
  • Okabe S, Tauchi T, Tanaka Y, Kitahara T, Kimura S, Maekawa T, Ohyashiki K. Efficacy of the dual PI3K and mTOR inhibitor NVP-BEZ235 in combination with nilotinib against BCR-ABL-positive leukemia cells involves the ABL kinase domain mutation. Cancer Biol Ther 2014; Forthcoming http://dx.doi.org/10.4161/cbt.26725; PMID: 24100660
  • Dbouk HA, Backer JM. A beta version of life: p110β takes center stage. Oncotarget 2010; 1:729 - 33; PMID: 21321382
  • Sacco A, Roccaro A, Ghobrial IM. Role of dual PI3/Akt and mTOR inhibition in Waldenstrom’s Macroglobulinemia. Oncotarget 2010; 1:578 - 82; PMID: 21317453
  • Markman B, Dienstmann R, Tabernero J. Targeting the PI3K/Akt/mTOR pathway--beyond rapalogs. Oncotarget 2010; 1:530 - 43; PMID: 21317449
  • Schmidt-Kittler O, Zhu J, Yang J, Liu G, Hendricks W, Lengauer C, Gabelli SB, Kinzler KW, Vogelstein B, Huso DL, et al. PI3Kα inhibitors that inhibit metastasis. Oncotarget 2010; 1:339 - 48; PMID: 21179398
  • Gojo I, Perl A, Luger S, Baer MR, Norsworthy KJ, Bauer KS, Tidwell M, Fleckinger S, Carroll M, Sausville EA. Phase I study of UCN-01 and perifosine in patients with relapsed and refractory acute leukemias and high-risk myelodysplastic syndrome. Invest New Drugs 2013; 31:1217 - 27; http://dx.doi.org/10.1007/s10637-013-9937-8; PMID: 23443507
  • Cho DC, Hutson TE, Samlowski W, Sportelli P, Somer B, Richards P, Sosman JA, Puzanov I, Michaelson MD, Flaherty KT, et al. Two phase 2 trials of the novel Akt inhibitor perifosine in patients with advanced renal cell carcinoma after progression on vascular endothelial growth factor-targeted therapy. Cancer 2012; 118:6055 - 62; http://dx.doi.org/10.1002/cncr.27668; PMID: 22674198
  • Argiris A, Cohen E, Karrison T, Esparaz B, Mauer A, Ansari R, Wong S, Lu Y, Pins M, Dancey J, et al. A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol Ther 2006; 5:766 - 70; http://dx.doi.org/10.4161/cbt.5.7.2874; PMID: 16760642
  • Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013; 6:27; http://dx.doi.org/10.1186/1756-8722-6-27; PMID: 23587417
  • Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, Demidov LV, Hassel JC, Rutkowski P, Mohr P, et al, METRIC Study Group. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med 2012; 367:107 - 14; http://dx.doi.org/10.1056/NEJMoa1203421; PMID: 22663011
  • Lee L, Niu H, Rueger R, Igawa Y, Deutsch J, Ishii N, Mu S, Sakamoto Y, Busse-Reid R, Gimmi C, et al. The safety, tolerability, pharmacokinetics, and pharmacodynamics of single oral doses of CH4987655 in healthy volunteers: target suppression using a biomarker. Clin Cancer Res 2009; 15:7368 - 74; http://dx.doi.org/10.1158/1078-0432.CCR-09-1696; PMID: 19934286
  • Metro G, Chiari R, Baldi A, De Angelis V, Minotti V, Crinò L. Selumetinib: a promising pharmacologic approach for KRAS-mutant advanced non-small-cell lung cancer. Future Oncol 2013; 9:167 - 77; http://dx.doi.org/10.2217/fon.12.198; PMID: 23414467
  • Greger JG, Eastman SD, Zhang V, Bleam MR, Hughes AM, Smitheman KN, Dickerson SH, Laquerre SG, Liu L, Gilmer TM. Combinations of BRAF, MEK, and PI3K/mTOR inhibitors overcome acquired resistance to the BRAF inhibitor GSK2118436 dabrafenib, mediated by NRAS or MEK mutations. Mol Cancer Ther 2012; 11:909 - 20; http://dx.doi.org/10.1158/1535-7163.MCT-11-0989; PMID: 22389471
  • McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G, Cervello M, Libra M, Candido S, Malaponte G, et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012; 3:1068 - 111; PMID: 23085539
  • Kim KB, Kefford R, Pavlick AC, Infante JR, Ribas A, Sosman JA, Fecher LA, Millward M, McArthur GA, Hwu P, et al. Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. J Clin Oncol 2013; 31:482 - 9; http://dx.doi.org/10.1200/JCO.2012.43.5966; PMID: 23248257
  • Villanueva J, Infante JR, Krepler C, Reyes-Uribe P, Samanta M, Chen HY, Li B, Swoboda RK, Wilson M, Vultur A, et al. Concurrent MEK2 mutation and BRAF amplification confer resistance to BRAF and MEK inhibitors in melanoma. Cell Rep 2013; 4:1090 - 9; http://dx.doi.org/10.1016/j.celrep.2013.08.023; PMID: 24055054
  • Yoshida T, Kakegawa J, Yamaguchi T, Hantani Y, Okajima N, Sakai T, Watanabe Y, Nakamura M. Identification and characterization of a novel chemotype MEK inhibitor able to alter the phosphorylation state of MEK1/2. Oncotarget 2012; 3:1533 - 45; PMID: 23237773
  • Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, Hamid O, Schuchter L, Cebon J, Ibrahim N, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med 2012; 367:1694 - 703; http://dx.doi.org/10.1056/NEJMoa1210093; PMID: 23020132
  • Gowrishankar K, Snoyman S, Pupo GM, Becker TM, Kefford RF, Rizos H. Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition. J Invest Dermatol 2012; 132:1850 - 9; http://dx.doi.org/10.1038/jid.2012.63; PMID: 22437314
  • Corcoran RB, Settleman J, Engelman JA. Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers. Oncotarget 2011; 2:336 - 46; PMID: 21505228
  • Curry JL, Torres-Cabala CA, Kim KB, Tetzlaff MT, Duvic M, Tsai KY, Hong DS, Prieto VG. Dermatologic toxicities to targeted cancer therapy: shared clinical and histologic adverse skin reactions. Int J Dermatol 2013; Forthcoming http://dx.doi.org/10.1111/ijd.12205; PMID: 23879247
  • King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE, Smitheman KN, Erhardt JA, Hughes-Earle A, Kane-Carson LS, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One 2013; 8:e67583; http://dx.doi.org/10.1371/journal.pone.0067583; PMID: 23844038
  • Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G, Leontieva OV, Blagosklonny MV, Gudkov AV. Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/- mice. Aging (Albany NY) 2012; 4:709 - 14; PMID: 23123616
  • Comas M, Toshkov I, Kuropatwinski KK, Chernova OB, Polinsky A, Blagosklonny MV, Gudkov AV, Antoch MP. New nanoformulation of rapamycin Rapatar extends lifespan in homozygous p53-/- mice by delaying carcinogenesis. Aging (Albany NY) 2012; 4:715 - 22; PMID: 23117593
  • Donehower LA. Rapamycin as longevity enhancer and cancer preventative agent in the context of p53 deficiency. Aging (Albany NY) 2012; 4:660 - 1; PMID: 23128359
  • Livi CB, Hardman RL, Christy BA, Dodds SG, Jones D, Williams C, Strong R, Bokov A, Javors MA, Ikeno Y, et al. Rapamycin extends life span of Rb1+/- mice by inhibiting neuroendocrine tumors. Aging (Albany NY) 2013; 5:100 - 10; PMID: 23454836
  • Mosley JD, Poirier JT, Seachrist DD, Landis MD, Keri RA. Rapamycin inhibits multiple stages of c-Neu/ErbB2 induced tumor progression in a transgenic mouse model of HER2-positive breast cancer. Mol Cancer Ther 2007; 6:2188 - 97; http://dx.doi.org/10.1158/1535-7163.MCT-07-0235; PMID: 17699716
  • Granville CA, Warfel N, Tsurutani J, Hollander MC, Robertson M, Fox SD, Veenstra TD, Issaq HJ, Linnoila RI, Dennis PA. Identification of a highly effective rapamycin schedule that markedly reduces the size, multiplicity, and phenotypic progression of tobacco carcinogen-induced murine lung tumors. Clin Cancer Res 2007; 13:2281 - 9; http://dx.doi.org/10.1158/1078-0432.CCR-06-2570; PMID: 17404113
  • Stelzer MK, Pitot HC, Liem A, Lee D, Kennedy GD, Lambert PF. Rapamycin inhibits anal carcinogenesis in two preclinical animal models. Cancer Prev Res (Phila) 2010; 3:1542 - 51; http://dx.doi.org/10.1158/1940-6207.CAPR-10-0228; PMID: 21149330
  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, et al. Rapamycin fed late in life extends lifespan in genetically heterogenous mice. Nature 2009; 460:392 - 6; PMID: 19587680
  • Robinson J, Lai C, Martin A, Nye E, Tomlinson I, Silver A. Oral rapamycin reduces tumour burden and vascularization in Lkb1(+/-) mice. J Pathol 2009; 219:35 - 40; http://dx.doi.org/10.1002/path.2562; PMID: 19434632
  • Athar M, Kopelovich L. Rapamycin and mTORC1 inhibition in the mouse: skin cancer prevention. Cancer Prev Res (Phila) 2011; 4:957 - 61; http://dx.doi.org/10.1158/1940-6207.CAPR-11-0266; PMID: 21733819
  • Liu Y, Huang Y, Wang Z, Huang Y, Li X, Louie A, Wei G, Mao JH. Temporal mTOR inhibition protects Fbxw7-deficient mice from radiation-induced tumor development. Aging (Albany NY) 2013; 5:111 - 9; PMID: 23454868
  • Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Kovalenko IG, Poroshina TE, Semenchenko AV, Provinciali M, et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp Gerontol 2005; 40:685 - 93; http://dx.doi.org/10.1016/j.exger.2005.07.007; PMID: 16125352
  • Anisimov VN. Metformin for aging and cancer prevention. Aging (Albany NY) 2010; 2:760 - 74; PMID: 21084729
  • Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE, et al. Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 2008; 7:2769 - 73; http://dx.doi.org/10.4161/cc.7.17.6625; PMID: 18728386
  • Menendez JA, Cufí S, Oliveras-Ferraros C, Vellon L, Joven J, Vazquez-Martin A. Gerosuppressant metformin: less is more. Aging (Albany NY) 2011; 3:348 - 62; PMID: 21483040
  • Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, et al. Metformin improves healthspan and lifespan in mice. Nat Commun 2013; 4:2192; http://dx.doi.org/10.1038/ncomms3192; PMID: 23900241
  • Mikheev AM, Stoll EA, Ramakrishna R, Mikheeva SA, Horner PJ, Rostomily RC. Geropotency: increased malignant potential of aging neural progenitors. Aging (Albany NY) 2012; 4:854 - 5; PMID: 23257545
  • Greaves M. Leukemogenesis and ageing: ‘fit for transformation’?. Aging (Albany NY) 2011; 3:79 - 80; PMID: 21386130
  • Henry CJ, Marusyk A, DeGregori J. Aging-associated changes in hematopoiesis and leukemogenesis: what’s the connection?. Aging (Albany NY) 2011; 3:643 - 56; PMID: 21765201
  • Vicente-Dueñas C, Abollo-Jiménez F, Ruiz-Roca L, Alonso-Escudero E, Jiménez R, Cenador MB, Criado FJ, Cobaleda C, Sánchez-García I. The age of the target cell affects B-cell leukaemia malignancy. Aging (Albany NY) 2010; 2:908 - 13; PMID: 21164221
  • DePinho RA. The age of cancer. Nature 2000; 408:248 - 54; http://dx.doi.org/10.1038/35041694; PMID: 11089982
  • Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 2011; 3:148 - 57; PMID: 21386129
  • Berstein LM. Metformin in obesity, cancer and aging: addressing controversies. Aging (Albany NY) 2012; 4:320 - 9; PMID: 22589237
  • Ikeno Y, Bronson RT, Hubbard GB, Lee S, Bartke A. Delayed occurrence of fatal neoplastic diseases in ames dwarf mice: correlation to extended longevity. J Gerontol A Biol Sci Med Sci 2003; 58:291 - 6; http://dx.doi.org/10.1093/gerona/58.4.B291; PMID: 12663691
  • Berrigan D, Perkins SN, Haines DC, Hursting SD. Adult-onset calorie restriction and fasting delay spontaneous tumorigenesis in p53-deficient mice. Carcinogenesis 2002; 23:817 - 22; http://dx.doi.org/10.1093/carcin/23.5.817; PMID: 12016155
  • Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 2010; 31:89 - 98; http://dx.doi.org/10.1016/j.tips.2009.11.004; PMID: 20097433
  • Blagosklonny MV. Prevention of cancer by inhibiting aging. Cancer Biol Ther 2008; 7:1520 - 4; http://dx.doi.org/10.4161/cbt.7.10.6663; PMID: 18769112