649
Views
30
CrossRef citations to date
0
Altmetric
Report

The function of FOXO1 in the late phases of the cell cycle is suppressed by PLK1-mediated phosphorylation

, , &
Pages 807-819 | Received 23 Nov 2013, Accepted 03 Jan 2014, Published online: 09 Jan 2014
 

Abstract

Polo-like kinase 1 (PLK1) plays crucial roles in multiple stages of cell division. Our previous studies suggest that global transcriptional regulation by PLK1 may contribute to its multiple functions. PLK1 depletion is associated with a decrease in cell viability and the induction of apoptosis; however, the underlying mechanisms are not completely understood. Here, we report that forkhead box protein O1 (FOXO1) is a novel physiological substrate of PLK1. FOXO1 is at the interface of crucial cellular processes, orchestrating programs of gene expression that regulate apoptosis, cell cycle progression, and oxidative-stress resistance. PLK1 interacts with and phosphorylates FOXO1, mainly at the G2/M phase of the cell cycle. PLK1-mediated phosphorylation leads to the impairment of FOXO1’s transcriptional activity in an Akt-independent manner. By immunofluorescence staining and subcellular fractionation, we demonstrate that PLK1-induced FOXO1 phosphorylation causes its nuclear exclusion. Furthermore, PLK1-mediated phosphorylation of FOXO1 negatively regulates its pro-apoptotic function and abrogates its ability to delay entry into and progression through G2/M transition. Therefore, our results suggest that PLK1 abrogates the inhibitory effects of FOXO1 on cell growth and survival to ensure timely cell cycle progression. This study not only reveals a novel and major regulatory mechanism of FOXO1 at the late phases of the cell cycle, but also provides new insight into the molecular mechanisms by which PLK1 inhibition leads to growth arrest and cell death.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.