707
Views
17
CrossRef citations to date
0
Altmetric
Report

RACK-1 regulates let-7 microRNA expression and terminal cell differentiation in Caenorhabditis elegans

, , , , , & show all
Pages 1995-2009 | Received 15 Dec 2013, Accepted 23 Apr 2014, Published online: 28 Apr 2014
 

Abstract

The let-7 microRNA (miRNA) regulates cell cycle exit and terminal differentiation in the C. elegans heterochronic gene pathway. Low expression of let-7 results in retarded vulva and hypodermal cell development in C. elegans and has been associated with several human cancers. Previously, the versatile scaffold protein receptor for activated C kinase 1 (RACK1) was proposed to facilitate recruitment of the miRNA-induced silencing complex (miRISC) to the polysome and to be required for miRNA function in C. elegans and humans. Here, we show that depletion of C. elegans RACK-1 by RNAi increases let-7 miRNA levels and suppresses the retarded terminal differentiation of lateral hypodermal seam cells in mutants carrying the hypomorphic let-7(n2853) allele or lacking the let-7 family miRNA genes mir-48 and mir-241. Depletion of RACK-1 also increases the levels of precursor let-7 miRNA. When Dicer is knocked down and pre-miRNA processing is inhibited, depletion of RACK-1 still leads to increased levels of pre-let-7, suggesting that RACK-1 affects a biogenesis mechanism upstream of Dicer. No changes in the activity of the let-7 promoter or the levels of primary let-7 miRNA are associated with depletion of RACK-1, suggesting that RACK-1 affects let-7 miRNA biogenesis at the post-transcriptional level. Interestingly, rack-1 knockdown also increases the levels of a few other precursor miRNAs. Our results reveal that RACK-1 controls the biogenesis of a subset of miRNAs, including let-7, and in this way plays a role in the heterochronic gene pathway during C. elegans development.