441
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Synthesizing Neurophysiology, Genetics, Behaviour and Learning to Produce Whole-Insect Programmable Sensors to Detect Volatile Chemicals

, , , , &
Pages 179-204 | Published online: 15 Apr 2013
 

Abstract

Insects have extremely sensitive systems of olfaction. These systems have been explored as potential sensors for odourants associated with forensics, medicine, security, and agriculture application. Most sensors based on insect olfaction utilize associative learning to “program” the insects to exhibit some form of behavioural response to a target odourant. To move to the next stage of development with whole-insect programmable sensors, an examination of how odourants are captured, processed and used to create behaviour is necessary. This review article examines how the neurophysiological, molecular, genetic and behavioural system of olfaction works and how an understanding of these systems should lead the way to future developments in whole-insect programmable sensors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.