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ABSTRACT   Anterior knee pain in young patients is 
the commonest type of knee disorder in clinical practice. 
However, the pathogenesis of this condition is unknown. 
On the basis of our recent research, we suggest a “neural 
model”. In our view, hyperinnervation in the lateral 
retinaculum, mainly nociceptive substance P-positive 
nerves induced by the release of neural growth factor, 
is involved in the pathogenesis of anterior knee pain. 
We hypothesize that periodic short episodes of ischemia 
may trigger neural proliferation.



A criticism of the patellofemoral malalignment 
theory 

In the 1970ʼs, anterior knee pain (AKP) was 
ascribed to the presence of patellofemoral 
malalignment (PFM) (Hughston 1968, Merchant 
et al. 1974, Merchant and Mercer 1974, Ficat 
et al. 1975, Insall 1979). We define PFM as an 
abnormality of patellar tracking consisting of 
lateral displacement or lateral tilt of the patella, or 
both, in extension, that reduces in flexion (Figure 
1) (Insall 1979). For many years, the PFM theory 
was widely accepted as an explanation for the gen-
esis of AKP. Currently, however, it is questioned 
by many and one reason is the poor relationship 
between symptoms and malalignment (Figures 2 
and 3). 

We believe that PFM is a necessary but not the 
sole cause of pain—i.e., it produces a “favorable 

environment” and neural damage is the “provok-
ing factor” or “triggering factor” (Sanchis-Alfonso 
et al. 1998). Overload or overuse may be another 
“triggering factor”. In our surgical experience, we 
have found that in patients with symptoms in both 
knees, when the more symptomatic knee is oper-
ated on, the symptoms in the contralateral less 
symptomatic knee, disappear or decrease in many 
cases, perhaps because we have reduced the load 
on this knee. However, some of the patients who 
have PFM may be asymptomatic because they 
have adequate dynamic control of patellar tracking 
during activities.

The great number of surgical techniques used to 
treat patients with AKP suggests a lack of under-
standing of the pathophysiology, which is another 
reason against the universal acceptance of the 
PFM theory. Our studies have centered on patho-
physiology (Sanchis-Alfonso et al. 1998, 2001, 
Sanchis-Alfonso and Roselló-Sastre, 1998, 2000). 
It is well-known that pain in patients with PFM can 
not be ascribed to a single factor, but to several. 
The infrapatellar fat pad, subchondral bone, the 
quadriceps tendon, patellar ligament, synovium, 
the medial and lateral retinaculum all have a rich 
nerve supply and these structures, individually or 
in combination, may cause pain (Fulkerson 1983, 
Fulkerson et al. 1985, Wojtys et al. 1990, Dye et 
al. 1998, 1999, Witonski and Wagrowska-Daniele-
wicz, 1999, Sanchis-Alfonso et al. 1999, Biedert 
and Sanchis-Alfonso 2002). 
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“Neural model” in the genesis of anterŠr knee 
pain in patients with PFM

In previous papers (Sanchis-Alfonso et al. 1998, 
2001, Sanchis-Alfonso and Roselló-Sastre 1998, 
2000), we described the histological changes in the 
lateral retinaculum of patients with painful PFM. 
The findings in our studies strongly support the 
view that in some patients with PFM, pain devel-
ops in the lateral retinaculum. However, this does 
not preclude the possibility of pain developing in 
other anatomical structures. 

In the lateral retinaculum of patients with pain-
ful PFM, we found nerve ingrowth, consisting of 
myelinated and unmyelinated nerve fibers with a 

Figure 1. An 18-year-old woman, who was referred because of anterior knee pain and patellar instability of her left knee. 
She had recurrent hemarthroses and severe giving-way with falling to the ground during activities of daily living. CT shows 
the patella lateralized at 0°—PFM type 1—(A), and relocated in the femoral trochlea at 30° (B) (reproduced with permis-
sion from Sanchis-Alfonso et al. 1994).

Figure 2. CT at 0° of knee flexion in a patient with AKP in 
the right knee, while the left knee was asymptomatic. How-
ever, in both knees, the PFM is symmetric (reproduced 
with permission from Sanchis-Alfonso 2003).

Figure 3. (A) CT at 0° in a patient with severe AKP in the 
left knee. This knee, which was operated on with an Insall’s 
realignment 2 years ago, caused severe symptoms despite 
correct patellofemoral congruence. The right knee was 
asymptomatic despite the presence of PFM. In this case, 
an axial stress radiograph of the left knee (C) showed an 
iatrogenic medial subluxation of the patella. Note the axial 
stress radiograph of the right knee (B). We therefore con-
clude that malalignment, even of significant degree, may 
remain dormant throughout an individual’s life, whereas in 
other cases it is associated with symptoms (reproduced 
with permission from Sanchis-Alfonso 2003).

  A
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predominant nociceptive component—i.e., sub-
stance P-immunoreactive nerves (Figure 4) (San-
chis-Alfonso and Roselló-Sastre 2000). Substance 
P is the main nociceptive neurotransmitter. This 
fact is not new. Indeed, hyperinnervation has been 
implicated in the pathophysiology of pain in other 
orthopedic conditions, such as chronic back pain 
and jumperʼs knee (Coppes et al. 1997, Freemont 
et al. 1997, Sanchis-Alfonso et al. 1999). 

We have shown that such hyperinnervation is 
associated with the release of neural growth factor 
(NGF), a polypeptide that stimulates axonogenesis 
(Sanchis-Alfonso and Roselló-Sastre 2000, San-
chis-Alfonso et al. 2001) (Figure 5). NGF has two 
biologically active precursors: one of about 34 kD 
of molecular weight, and the other of 27 kD (Dicou 
et al. 1997). We found the 34 kD precursor in the 
lateral retinaculum of patients with painful PFM, 
which means that the nerve fibers of the lateral 
retinaculum must still be in a proliferative phase 
(Sanchis-Alfonso et al. 2001).

This nerve ingrowth was mostly located in and 
around the vessels (Sanchis-Alfonso et al. 1998) 
(Figure 6). This fact is not new either. Indeed, 
vascular innervation has been implicated in the 
pathophysiology of pain in other orthopedic con-
ditions, such as osteoid osteoma (Hasegawa et al. 
1993), and the lumbar facet syndrome (Grönblad et 
al. 1991). Thus, we have seen S-100 positive fibers 
in the adventitia and the muscular layer of medium 
and small arteries (Figure 6) in the lateral retinacu-
lum of patients with painful PFM. S-100 protein 
is a good marker when studying nerves, because 
it can identify Schwann cells that accompany the 
axons in the myelinated nerves. It is well-known 
that myelinated fibers lose their myelin sheath 
before entering the muscular arterial wall, but this 
was not so in our patients. Since we used S-100 
for immunostaining of only the myelinated fibers, 
and the myelin sheath is said to be lost before 

Figure 4. Substance P (SP) is seen as a granular pattern in 
nerve fibers. (hematoxylin counterstained, original magnifi-
cation ×1000) (reproduced with permission from Sanchis-
Alfonso and Roselló-Sastre 2000).

Figure 5. Immunoblot detection of NGF, showing a thick 
band located at the level of the NGF precursor in the pain 
group (cases 1 to 4) and absence or a very thin band in 
the group of patients with instability as their main symptom 
(cases 5–7). The numbers at the left indicate molecular 
mass in kD. 

Figure 6. An unusual finding is present in our cases: a rich vascular innervation consisting of tiny myelinated fibers that, 
enter the outer muscular layer from the arterial adventitia, and form a necklace. Transverse (A) and tangential sections (B) 
(S-100 protein, Magnification ×400) (reproduced with permission from Sanchis-Alfonso et al. 1998).

  A   B
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the nerve enters the muscular arterial wall, we 
were surprised to find S-100-positive fibers in the 
muscular layer of medium and small arteries. This 
would indicate an increase in vascular innervation. 
As Byers suggested in 1968, pain can be gener-
ated and transmitted by vascular pressure-sensitive 
autonomic nerves. 

Chronic lateral subluxation of the patella may 
cause adaptive shortening of the lateral retinacu-
lum (Fulkerson 1983). During flexion of the knee, 
the patella migrates medially into the femoral 
trochlea (Sanchis-Alfonso et al. 1994). This pro-
duces recurrent stretching on the shortened lateral 
retinaculum that may cause secondary changes in 
the nerve, such as neuromas (Figure 7) and neural 
myxoid degeneration (Fulkerson 1983, Fulker-
son et al. 1985). As for neuromas, we found a 
clear relationship between neuromas and pain; as 
regards neural myxoid degeneration, we detected 

no relationship between it and pain (Sanchis-
Alfonso et al. 1998).

We believe that hypoxia may play a role in the 
genesis of AKP in certain patients. It has been 
reported that hypoxia of the peripheral nervous 
system can trigger synthesis by neurons (Calzà 
et al. 2001) or other cells (Lee et al. 1996, Abe 
et al. 1997, Woolf et al. 1997) of vascular endo-
thelial growth factor (VEGF) and NGF. VEGF 
acts as a hypoxia-inducible angiogenic factor that 
causes hypervascularization (Shweiki et al. 1992, 
Minchenko et al. 1994, Liu et al. 1995, Jackson et 
al. 1997, Berse et al. 1999, Hayashi et al. 1999, 
Richard et al. 1999, Steinbrech et al. 1999, Marti 
et al. 2000). In a preliminary study, we found that 
patients with painful PFM had, VEGF (Figure 8) 
in stromal fibroblasts, vessel walls, endothelial 
cells and large nerve fibers, in equal amounts in 
axons and in perineurum (Sanchis-Alfonso 2003). 
Moreover, we also noted an increase in the number 
of vessels in the lateral retinaculum of patients 
with painful PFM and a still greater increase in 
the group with severe pain, than in the groups 
with moderate or slight pain (unpublished observa-
tions). NGF stimulates neural sprouting and has-
tens neural proliferation in vessel walls (Isaacson 
and Crutcher 1995, Kawaja 1998). This is just like 
the pattern of hyperinnervation that is seen in the 
lateral retinaculum of patients with painful PFM 
(Sanchis-Alfonso et al. 1998). Finally, we found 
histological changes associated with ischemia, 
such as arterial vessels with obliterated lumina and 
thick muscular walls, infarcted foci of the connec-
tive tissue, fibroblasts showing autophagic intracy-

Figure 7. Nerve fibers mimicking amputation neuroma 
(Hematoxylin-eosin, magnification ×100) (reproduced with 
permission from Sanchis-Alfonso et al. 1998).

Figure 8. (A) The vascular endothelial growth factor (VEGF) is present in small vessels (wall and endothelium) and peri-
vascular fibroblasts. (B) Some cases have VEGF expression even in the perineural shift and inside the axons. (VEGF, 
hematoxylin counterstained, magnification ×400) (reproduced with permission from Sanchis-Alfonso 2003).

  A   B



Acta Orthop Scand 2003; 74 (6): 697–703                                                                                                         701

toplasmic vacuoles, neoangiogenesis, and changes 
in nerves, such as neural sprouting (Richardson 
and DeGirolami 1995, Society for Ultrastructural 
Pathology 1995, Kraushaar and Nirschl 1999, San-
chis-Alfonso 2003). 

Our histological findings (Sanchis-Alfonso et 
al. 1998, Sanchis-Alfonso and Roselló-Sastre 
2000) accord with those of Messner et al. (1999) 
in experimentally-induced Achilles tendinosis. The 
results of this study lend credence to the validity 
of our histological observations. The histological 
evaluation of tendinosis showed hyperinnerva-
tion, hypervascularization and an increase in 
immunoreactivity for substance P. It should be 
kept in mind that Achilles tendinosis is due to 
repetitive overloading of the Achilles tendon—i.e., 
microtraumas—and is related to the duration and 
intensity of various activities, a mechanism similar 
to symptomatic PFM.

In conclusion, we suggest that brief episodes of 
tissular ischemia, perhaps due to vascular torsion 
(Sanchis-Alfonso et al. 2001), and secondary to 
medial traction on a retracted lateral retinaculum 
from PFM, may trigger the release of NGF and 
VEGF. When NGF is present in the tissues, it 
induces hyperinnervation, attraction of masto-
cytes, and the release of substance P by free nerve 
endings (Malcangio et al. 1997, Sanchis-Alfonso 
and Roselló-Sastre 2000). Substance P stimulates 
mastocytes, which can liberate nonneurogenic 
pain mediators, such as histamine (Grönblad et al. 
1991). Mastocytes can also release NGF (Nilsson 
et al. 1997). Substance P increases the release of 
prostaglandin E2, which stimulates nociceptors 
(Ahmed et al. 1998). Substance P and prostaglandin 
E also induce bone resorption, which can explain 
the osteoporosis found in some cases of AKP 
(Sherman and Chole 1995). Finally, substance P 
and VEGF stimulate endothelial cell proliferation 
and migration, which are essential for the develop-
ment of a new vascular network that may promote 
tissue repair—for example, healing of microtears 
in the lateral retinaculum, but indirectly maintain 
the vicious cycle (Ashton et al. 1994). Obviously, 
further studies, now being pursued, are needed to 
support the ischemia hypothesis.

Future directŠns

If the “neural model” of AKP proves to have some 

validity, it would lead in many cases to therapeutic 
recommendations to alleviate pain more effectively 
and safely than the attempts to correct “malalign-
ment”. Thus, a pharmaceutical approach, such as 
drug inhibitors of the synthesis and release of sub-
stance P, such as capsaicin, or substance P receptor 
antagonists, or drug inhibitors of angiogenesis—
e.g.,  the newer cyclooxygenase-2 (COX-2) inhibi-
tor anti-inflammatory drugs—could be of special 
interest in the treatment of pain in these patients. 
Finally, if we can show that regional anoxia plays 
a key role in the genesis of pain, topical peripheral 
vasorelaxant drugs (for preventing vasospasm) 
could also be of particular interest in the treatment 
of pain in these patients.
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lofemoral Study Group, whose collaboration inspires and 
enriches our work.
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