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ABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. The standard first-line 
treatment for PDAC is gemcitabine chemotherapy which, unfortunately, offers only limited 
chance of a lasting cure. This review further evaluates the hypothesis that the effectiveness 
of gemcitabine can be improved by combining it with evidence-based complementary 
measures. Previously, supported by clinical trial data, we suggested that a number of dietary 
factors and nutraceuticals can be integrated with gemcitabine therapy. Here, we evaluate a 
further 10 agents for which no clinical trials have (yet) been carried out but there are 
promising data from in vivo and/or in vitro studies including experiments involving combined 
treatments with gemcitabine. Two groups of complementary agents are considered: Dietary 
factors (resveratrol, epigallocatechin gallate, vitamin B9, capsaicin, quercetin and sulforaphane) 
and nutraceutical agents (artemisinin, garcinol, thymoquinone and emodin). In addition, we 
identified seven promising agents for which there is currently only basic (mostly in vitro) 
data. Finally, as a special case of combination therapy, we highlighted synergistic drug 
combinations involving gemcitabine with “repurposed” aspirin or metformin. We conclude 
overall that integrated management of PDAC currently is likely to produce the best outcome 
for patients and for this a wide range of complementary measures is available.

Abbreviations:  AMPK: Adenosine Monophosphate Kinase; ASP: Aspirin; CAPS: Capsaicin; CSC: 
Cancer Stem Cell; DHA: Dihydroartemisinin; EGCG: Epigallocatechin Gallate; EMO: Emodin; EMT: 
Epithelial-Mesenchymal Transition; FOLFIRINOX: Folinic acid + Fluorouracil + Irinotecan + Oxaliplatin; 
GAR: Garcinol; GEM: Gemcitabine; MET: Metformin; NF-κB: Nuclear Factor κ-light-chain-enhancer 
of activated B cells; PDAC: Pancreatic Ductal Adenocarcinoma; QUER: Quercetin; RAD: Radiation; 
RES: Resveratrol; ROS: Reactive Oxygen Species; SFN: Sulforaphane; TRAIL: Tumor Necrosis 
Factor-Related Apoptosis Inducing Ligand; TMQ: Thymoquinone

1.  Introduction

Pancreatic cancer, the most common form of which is 
“pancreatic ductal adenocarcinoma” (PDAC), is one of 
the hardest to treat cancers both because of the diffi-
culty of early diagnosis and the limited effectiveness 
of the available therapies (1–3). With a five-year sur-
vival rate of only some 6%, the associated mortality 
rates are regional (deaths per 100,000 people) being 
ca. 7.2 (Europe), 6.5 (North America) and 1.2 (East 
Africa) (4). PDAC is age-related; its incidence has been 
rising steeply for a number of years, and it is expected 
to become the most common cause of cancer-related 
deaths in the USA by 2030 (5). PDAC arises in the 
pancreatic ducts which perform the gland’s main exo-
crine functions. The liver is often the first major organ 
to be metastasized due to the proximity of the hepatic 

portal vein (6). In fact, liver failure is frequently the 
first sign and the main cause of death from PDAC. In 
the context of integrated management, therefore, treat-
ments should ideally protect also the liver.

The most common first-line treatment for PDAC is 
gemcitabine chemotherapy (7, 8). Gemcitabine is an 
“antimetabolite” pro-drug which becomes active once 
phosphorylated into diphosphate or triphosphate inside 
cells at very specific phases of the mitotic cycle. Thus, 
it works most effectively on fast-dividing cells, hence 
cancer cells. The basic mechanism of cell death is DNA 
damage (9). Apart from its inherent limited effectiveness 
and the common undesirable side effects of the treat-
ment, use of gemcitabine suffers from the eventual 
onset of resistance to the drug. In these respects, there-
fore, any adjustment to gemcitabine chemotherapy that 
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will increase its sensitivity (and hence lower its dosage 
of use) and lengthen its period of effectiveness (e.g., 
overcoming resistance) would be welcome. Our hypoth-
esis is that these are possible by combining the gem-
citabine chemotherapy with evidence-based 
complementary agents. Indeed, use of complementary 
agents in cancer treatment generally is increasingly, 
being favored by patients as well as by oncologists 
(10–14).

In the first instance, an association between 
dietary/nutritional lifestyle and PDAC is apparent 
epidemiologically from the fact that the PDAC inci-
dence and mortality rates are much higher in rela-
tively developed countries with diets rich in fatty, 
oily or sweet foods (4). Whilst our understanding 
of this association has come a long way over the 
years, we know much less about how dietary and 
nutraceutical agents, as well as lifestyle factors, could 
associate with PDAC during treatment (15). In our 
previous review, we advanced the hypothesis that the 
best outcome for PDAC currently would be obtained 
by integration of clinical medicine with evidence-based 
natural complementary agents and lifestyle factors 
(16). Of the former, 9 (six dietary and three nutra-
ceutical compounds) were chosen based upon evi-
dence from clinical trials as the essential criterion, 
as well as meta-analyses and in vivo and in vitro 
experiments. In addition, however, there is a range 
of natural agents that did not meet all of those strict 
criteria but may do so in the future as more evidence 
is gathered. Here, we evaluate this second group of 
“emerging” agents incorporating both dietary factors 
and nutraceuticals. For all these, there is both in 
vivo and/or in vitro evidence including combination 
treatments. in vivo animal models include molecu-
larly appropriate transgenic models wherever possi-
ble. As regards in vitro experiments, the data used 
come mainly from human cells.

Central to our approach, again, is the epigenetic 
nature of cancer, including PDAC, which means that 
genes and their products can be regulated signifi-
cantly including by dietary and lifestyle factors (16–
20). Indeed, overall, ca. 40% of cancers are due to 
modifiable, hence reversible factors (www.cancer.org/
latest-news/more-than-4-in-10-cancers-and-cancer-
deaths-linked-to-modifiable-risk-factors.html). Not 
surprisingly, therefore, the link between nutrition and 
cancer has been questioned for over a century (21). 
Since pancreas is a strongly hormonal (both endo-
crine and exocrine) organ, PDAC would be expected 
to be particularly sensitive to the body’s biochemistry 
and chemical balance (e.g., Refs. (22–25)).

2.  Dietary Factors

In our previous review we considered dietary factors 
in 3 different categories (16). General/background con-
ditioners included acidity, glycaemic index and choles-
terol. As multifactorial foodstuffs, we covered red and 
processed meat, fish, fruit and vegetables, dairy, honey 
and coffee. Finally, as specific dietary agents the fol-
lowing satisfied our full criteria: Vitamins A, C, D, and 
E, curcumin and genistein. Here, we have accepted for 
further consideration six specific dietary factors for 
which significant in vivo and in vitro data were avail-
able. The emphasis again is on the possible potentiating 
effect of these agents on gemcitabine chemotherapy. 
Such dietary agents can also be taken as supplements.

2.1.  Resveratrol

Resveratrol is a natural phytoalexin that is produced 
in plants as a defensive response against fungal infec-
tions and other environmental stressors. It is particu-
larly abundant in the skin of red grapes, blueberries, 
raspberries, mulberries and nuts (Table 1A). Resveratrol 
has been shown to inhibit proliferation and invasiveness 
of PDAC cells by reducing “nuclear factor 
κ-light-chain-enhancer of activated B cells” (NF-κB) 
expression, downregulating lipid metabolism and acti-
vating pro-apoptotic caspase-3 (25–27). Furthermore, 
markers of epithelial-mesenchymal transition (EMT), 
an early event in invasiveness, were suppressed (28). 
A synthetic, more stable derivative of resveratrol (tri-
acetyl resveratrol) also selectively induced apoptosis in 
PDAC cells in vitro without affecting normal pancreatic 
ductal cells and this occurred via downregulation of 
hedgehog signaling (29). Combined treatment of PDAC 
cells with gemcitabine and resveratrol (i) increased 
apoptosis highly significantly and (ii) reduced gemcit-
abine resistance in vitro and this involved adenosine 
monophosphate kinase (AMPK) (30, 31). Also, in vitro, 
the inhibition of colony formation by gemcitabine was 
enhanced by resveratrol addition, again, involving an 
enhanced pro-apoptotic effect (Figure 1A) (27). 
Consistent with this, in an in vivo orthotopic mouse 
model of PDAC, the anti-tumorigenic effect of gem-
citabine was potentiated by combination with resvera-
trol (Figure 1B) (32). These results were confirmed by 
Gupta et  al. and Xu, Q. et  al. (33, 34). Importantly, 
also, resveratrol suppressed both the “basal” stemness 
of PDAC cells and that promoted by gemcitabine 
(Figure 1C) (27). In addition, pterostilbene, a natural 
analogue derived from resveratrol, enhanced gemcit-
abine sensitivity in part by inhibiting expression of the 
multi-drug resistance gene, MDR1 (35).

http://www.cancer.org/latest-news/more-than-4-in-10-cancers-and-cancer-deaths-linked-to-modifiable-risk-factors.html
http://www.cancer.org/latest-news/more-than-4-in-10-cancers-and-cancer-deaths-linked-to-modifiable-risk-factors.html
http://www.cancer.org/latest-news/more-than-4-in-10-cancers-and-cancer-deaths-linked-to-modifiable-risk-factors.html
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Interestingly, addition of resveratrol to the com-
bined application of gemcitabine and capsaicin restored 
the effectiveness of chemotherapy and increased radio-
sensitivity in in vivo (xenograft) models of human 
PDAC (36, 37). These studies would raise the possi-
bility of extending the integrated management to triple 
(or more) combinations without incurring antagonism, 
as we suggested earlier (16). Finally, resveratrol 
reduced the undesirable side effects of chemotherapy 
on heart and liver by increasing the activity of anti-
oxidant enzymes (38).

In conclusion, resveratrol has excellent properties 
both by itself as an anti-PDAC agent and for possible 
integration with gemcitabine chemotherapy in the future.

2.2.  Epigallocatechin Gallate

Epigallocatechin gallate (EGCG) is abundant in teas, 
especially green tea, and fruits, especially berries 
(Table 1A). Epidemiological studies have shown ben-
eficial effects of green tea on cancers of lung, breast, 
esophageal, stomach, liver and prostate (39, 40). As 
regards PDAC, however, such studies have given 
somewhat inconsistent results. Most meta-analyses 
concluded (i) that green tea consumption was not 
associated with PDAC risk and (ii) that high con-
sumption was associated with slightly lower risk (41). 
This seemed more pronounced among Chinese pop-
ulations (42, 43). Abe et  al. recently evaluated the 
available epidemiological evidence for green tea con-
sumption and showed that whilst PDAC risk was not 
affected, several other cancers were associated signifi-
cantly with reduced risk (44). These included, impor-
tantly, liver cancer. Possible reasons for the discrepancy 
between the epidemiological data could include (i) 
the ranges of green tea consumption and (ii) com-
pounding lifestyle factors especially smoking. 
Importantly, however, no adverse effect has been 
reported. Furthermore, green tea consumption could 
be beneficial indirectly by reducing the impact of 
diabetes, obesity and inflammation including pancre-
atitis (40, 45–47).

There is a wealth of in vitro evidence showing that 
green tea and one of its most active ingredients, EGCG, 
inhibit development and progression of cancer, includ-
ing PDAC (48, 49). As regards “combination therapies,” 
an initial in vitro study suggested significant synergistic 
effects of gemcitabine with EGCG (over a range of 
concentrations). This involved increased expression of 
“signal transducer and activator of transcription 3” 
(STAT3) target genes and enhanced apoptosis (Figure 
2A) (50). More recently, EGCG was able to enhance 
the gemcitabine-induced reduction in insulin-like 

Figure 1. E ffects of a dietary compound on PDAC: Resveratrol. 
For all parts of the figure (A to C), treatments were as follows: 
control (1), resveratrol (2), gemcitabine (3) and their combination 
(4). A. In vitro effects on growth (quantified as colony number) 
of treating two different human PDAC cell lines (MiaPaCa-2/gray 
bars and Panc-1/black bars) with resveratrol, gemcitabine and 
their combination. For both cell lines, the inhibition of growth 
was significantly greater for the combination than gemcitabine 
alone (P < 0.01). From Zhou, C et  al. (27). B. In vivo growth of 
MiaPaCa-2 cells in an orthotopic xenograft model of PDAC. The 
inhibition of growth was significantly greater for the combina-
tion than gemcitabine alone (P < 0.001). Modified from Harikumar 
et  al. (32). C. Assessment of stemness in PDAC cells obtained 
from tissue sections of KPC mice. Stemness was quantified as 
the Sox2-positive area, expressed as a percentage of total. 
Resveratrol significantly reduced the effect of gemcitabine in 
inducing stemness (P < 0.001), bringing it to control level. Dotted 
horizontal line denotes the median control level, as reference. 
From Zhou, C. et  al. (27).
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growth factor receptor and Akt/protein kinase B sig-
naling, and thus reduce cell migration and invasion in 
vitro (Figure 2B) (51). in vivo also (xenograft mouse 
model of PDAC), intraperitoneal EGCG downregulated 
glycolysis and potentiated the effect of gemcitabine, 
together reducing tumor weight by an additional ca. 
30% (Figure 2C) (52).

In conclusion, the evidence for EGCG as an 
anti-PDAC agent is overall positive, albeit limited. 
The evidence is stronger for liver cancer. Hence, this 
agent would be worth considering for possible inte-
gration with gemcitabine chemotherapy in the future.

2.3.  Vitamin B9

Vitamin B9 (folate) is one of eight B vitamins. It is 
abundant in foods such as citrus fruits, green leafy veg-
etables and legumes (Table 1A) (53). Taken as folic acid, 
it is converted to folate by the body. Folate deficiency 
has been shown to induce chromosomal breaks and 
mutations in tumor suppressor genes, hence its supple-
mentation proved beneficial against PDAC (54). The 
level of reduced risk from increased folate intake varied 
between studies, but importantly, no adverse effect has 
been reported (53, 55). Lin, H. et  al. found in a 
meta-analysis that a high intake of folate, especially as 
part of diet, reduced the relative risk of PDAC by as 
much as 34% (Figure 3) (53). This conclusion was sup-
ported by Yallew et  al., also reporting a significant 
inverse association between folate intake and PDAC 
(56). Studies have suggested that folate supplementation 
may be most beneficial when taken with certain 

folate-rich foods, e.g., spinach and asparagus (56). 
Although vitamin B9 has not been tested in combination 
with gemcitabine systemically, it is one of the four com-
ponents of the FOLFIRINOX regime, which is given to 
cases advanced (metastatic) PDAC. So, it can be con-
sidered acceptable for integrated management of PDAC.

In conclusion, we consider vitamin B9 to be an 
effective complement to gemcitabine chemotherapy of 
PDAC. We should note, however, that B vitamins are 
sometimes taken as a “complex” of the various forms, 
but this should best be avoided, since there is some 
evidence that B12 may promote cancer including 
PDAC (57). The latter is consistent with dietary 
sources of B12 (animal products such as meat, dairy 
etc.) also being undesirable (16).

2.4.  Capsaicin

Capsaicin is the active ingredient of hot red peppers 
(Table 1A) (58). It has anticancer properties through 
its ability to induce cell cycle arrest and cause apop-
tosis (58). Capsaicin reduced the growth of PDAC 
xenografts in mice by promoting apoptosis mediated 
by caspase-3 and caspase-8 (59). Additionally, capsa-
icin downregulated PI3 kinase signaling, leading to 
an increase in cell cycle arrest. Through the inhibition 
of the mitochondrial electron transport chain, capsa-
icin could generate reactive oxygen species (ROS) and 
increase DNA damage, without affecting healthy pan-
creatic cells (60). There is no study on the possible 
effects of combining capsaicin with gemcitabine. 
However, in cases where gemcitabine monotherapy 

Table 1. D ietary and nutraceutical agents with emerging anti-PDAC effects.
A.

Dietary agent Formula Mechanisms of action/Cellular effects Food sources

Resveratrol C14H12O3 Multiple – anti-inflammatory; antioxidant; inhibition of 
growth and stemness

Red grapes (especially the skin), blueberries, 
raspberries, nuts

EGCG C22H18O11 Multiple – anti-inflammatory; antioxidant; anti-angiogenic; 
pro-apoptotic; effects on gene expression

Green tea; fruits (especially berries), nuts

Vitamin B9 (Folate) C19H19N7O6 Multiple – anti-proliferative and anti-migratory; modulator 
of angiogenesis, cytokine secretion, oxidative stress and 
immune response

Vegetables, (especially green leaf ), whole 
grains, eggs, legumes, seeds, nuts

Capsaicin C18H27NO3 Activator of vanilloid-type receptor-channel; pro-apoptotic; 
inhibitor of growth, angiogenesis

Cayenne (red) peppers and other chili 
peppers

Quercetin C15H10O7 Multiple - anti-inflammatory; proteolytic enzyme inhibition; 
immune-stimulant; antioxidant

Apples, red grapes, cherries, red raspberry, 
onions

B.

Nutraceutical agent Formula Mechanisms of action / Cellular effects Source(s)
Artemisinin C15H22O5 Multiple - pro-apoptotic; anti-proliferative; antioxidant; 

anti-angiogenic
Sweet wormwood (Artemisia annua)

Garcinol C38H50O6 Multiple – antioxidant; anti-proliferative; anti-invasive; 
pro-apoptotic

Tropical fruit (Garcinia indica)

Thymoquinone C10H12O2 Multiple – antioxidant; anti-proliferative; pro-apoptotic; 
immune modulator

Fennel flower (Nigella sativa)

Emodin C15H10O5 Multiple – anti-proliferative; pro-apoptotic; 
anti-inflammatory; anti-invasive

Roots and bark of various plants (e.g. 
rhubarb, buckthorn, Japanese knotweed)

A. Dietary agents. B. Nutraceuticals. For both groups, chemical formulae, main mechanisms of action (cellular effects) and examples of their natural 
sources are given. Further details can be found in the main text.
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was ineffective, supplementation with capsaicin and 
resveratrol restored the full effectiveness of gemcit-
abine in vivo (Figure 4A) (37). This effect occurred 
through apoptosis. If, however, gemcitabine was at its 
full effectiveness, no increase following treatment with 
resveratrol and capsaicin was observed. Combinations 
of resveratrol and capsaicin were also able to sensitize 
some PDAC cell lines to radiotherapy, leading to fur-
ther reduction in tumor volume in vivo (Figure 4B) 
(36). Capsaicin may also benefit patients through pain 
relief and reduction of inflammation (61).

In conclusion, capsaicin has excellent properties for 
possible integration into management of PDAC, both 
directly and as regards side effects of the treatment.

2.5.  Quercetin

Quercetin (also known as sophoretin or meletin) 
belongs to the flavonoid group of polyphenols and 

Figure 2. E ffects of a dietary compound on PDAC: 
Epigallocatechin gallate. A. Apoptotic responses of Panc-1 cells 
to treatment with increasing concentrations of epigallocatechin 
gallate (EGCG) and combination with a fixed dose of gemcit-
abine (GEM). The histobars denote the following: GEM alone 
(1), GEM + EGCG (2-4, increasing concentrations of EGCG). Data 
represent mean ± SD. There was a statistically significant dif-
ference between the effects of all the combinations compared 
with GEM alone (P < 0.05). From Tang et  al. (50). B. Effects of 
GEM, EGCG and their combination on the invasiveness on two 
pancreatic cancer cell lines, Panc-1 (black histobars) and 
MiaPaCa-2 (gray histobars). Data represent mean ± SD. Effects 
of the treatments are expressed as a percentage of control 
(Cont). For both cell lines, the effect of the combination was 
significantly greater than GEM alone (P < 0.01). From Wei, R. 
et  al. (51). C. Effect of GEM, EGCG and their combination on 
tumorigenesis in a subcutaneous xenograft model of PDAC 
(KPC cells). “Cont” denotes control data from untreated animals. 
Data represent mean ± SD. The decrease in tumor weight 
induced by the combination was greater than GEM alone 
(P < 0.05). From Wei, R. et  al. (52).

Figure 3. E ffects of a dietary compound on PDAC: Vitamin B9. 
Meta-analysis of studies examining the effects of folate levels 
(assessed from dietary intake, blood levels and supplements) 
on pancreatic cancer risk. Diamonds indicate the average and 
the spread of the data. White diamonds relate to the individual 
data sets. Black diamond indicates overall significantly reduced 
relative risk, despite the noticeable variability across the three 
sets of studies. Modified from Lin, H. et  al. (53), where further 
details and primary data can be found.
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found naturally in apples, grapes, red raspberry and 
onions (Table 1A). Although by itself it is not readily 
bioavailable, its various metabolites (present in sys-
temic circulation after consumption) demonstrate sig-
nificant biological (antioxidant and anti-inflammatory) 
activity. In vitro, quercetin suppressed a range of 
PDAC cell behaviors by regulating a variety of sig-
naling pathways. Cell viability was suppressed 
dose-dependently (Figure 5A) (62, 64). Apoptotic cell 
death was increased significantly (Figure 5B) (e. g., 
Ref. (63)). The pro-apoptotic/anti-tumor effect of 
quercetin was confirmed in frozen tissue sections of 
human PDAC xenografts and shown to involve 
miR-let-7c as an intermediary (65). Importantly, also, 
in human primary PDAC cells, quercetin upregulated 
miR-200b-3p expression and inhibited Notch signal-
ing, resulting in inhibition of stemness and self-renewal 
(66). Parallel to these effects, quercetin strongly down-
regulated the expression of a range of EMT markers 
(Figure 5C) (28, 64). Consistent with these effects, 
taken together, cellular invasiveness was significantly 
decreased, and this was dose dependent (Figure 
5D) (64).

There is also some evidence from human PDAC 
cells in vitro that quercetin potentiates the effective-
ness of gemcitabine in inhibiting cell viability and 
promoting apoptosis (Figures 5A and B). Also, on 
two human PDAC cell lines, Serri et  al. used biode-
gradable nanoparticles and showed, again, that quer-
cetin could enhance the impact of gemcitabine on 
cell viability by 15–20% (67). Consistent with these 
results, Lan et al. showed that quercetin had a remark-
able pro-apoptotic effect on a gemcitabine-resistant 
variant of Mia-Paca-2 cells (Figure 5E) (62). This was 
extended recently to several other gemcitabine-resistant 
PDAC as well as hepatocarcinoma cell lines by Liu 
ZJ et  al. (68). This effect was revealed to involve the 
“receptor for advanced glycation end products” 
(RAGE) (62). In a further study, a natural isoform of 
quercetin, quercetin-3-O-glucoside, exhibited synergy 
with low concentrations of gemcitabine on human 
PDAC CFPAC-1 and SNU-213 cells in suppressing 
transverse migration induced by basic fibroblast 
growth factor (bFGF) (69).

In vivo, also, quercetin caused a significant reduc-
tion of tumor volume in a xenograft model of PDAC, 
again involving let-7c (Figure 5F) (65). However, less 
work has been done to test the possible effectiveness 
of combining quercetin with gemcitabine in vivo. In 
the one available study, Angst et  al. showed in an 
orthotopic model of PDAC that quercetin maintained 

Figure 4. E ffects of a dietary compound on PDAC: Capsaicin. 
A. Effects on tumorigenesis of treatment with gemcitabine 
coupled with capsaicin (CAPS) and resveratrol (RES) com-
bined in a xenograft (Capan-2) model of pancreatic cancer. 
Tumorigenesis was quantified as tumor weight expressed 
relative to control. The treatments were as follows: control 
(1), high-dose GEM (2), high-dose GEM coupled with CAPS 
and RES combination (3), low-dose GEM (4), and low-dose 
GEM coupled with CAPS and RES combination (5). There 
was no added effect of treatment with high-dose GEM com-
bined with CAPS + RES, suggesting a saturating effect of the 
chemotherapy (3 vs. 2). Although low-dose GEM had no 
effect on tumorigenesis (4), combination with CAPS + RES 
produced a marked inhibitory effect (5 vs. 4, statistics not 
specified). Dotted horizontal line indicates null effect. 
Modified from Vendrely et  al. (37), where further details 
can be found. B. Tumorigenesis in a xenograft (Capan-2) 
model of pancreatic cancer. The treatments were as follows: 
control (1), 2 Gy radiotherapy (2), and radiotherapy with 
CAPS + RES (3). Data are presented as mean ± SEM. The effect 
of the radiotherapy in suppressing tumorigenesis was poten-
tiated significantly by combination with CAPS + RES (3 vs. 
2; P < 0.05). From Vendrely et  al. (36), where further details 
can be found.
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Figure 5. E ffects of a dietary compound on PDAC: Quercetin. A. Cell viability of MiaPaCa-2 cells following treatment with 
increasing concentrations of quercetin (QUER) and gemcitabine (GEM). Cells were pretreated with quercetin at various concen-
trations for 24 h, and then treated with a fixed concentration of gemcitabine for 72 h. The effects of the combinations with 25 
and 50 µM QUER were inferred to be significantly greater than GEM alone (P < 0.05). From Lan et  al. (62). B. PANC-1 cell apoptosis. 
Effects of QUER and GEM, and their combination, on compared with control (Cont). Apoptosis was defined as the number of 
apoptotic cells expressed as a percentage of control. Modified from Lee et  al. (63). C. Effects of treatment with increasing QUER 
concentrations on mRNA expression of EMT markers (E-cadherin, N-cadherin, and Vimentin) in PATU-8988 cells. Quercetin treat-
ment resulted in dose-dependent reductions in expression of all three mRNAs. In all conditions and concentrations, treatment 
with quercetin was significant compared with the control (P < 0.05). From Yu et  al. (64). D. Invasiveness (quantified arbitrarily 
as the number of invaded cells per field of view) in PATU-8988 cells treated with increasing concentrations of QUER. For all 
concentrations, treatment with quercetin produced a significantly greater reduction in invasiveness compared with the control 
(P < 0.05). From Yu et  al. (64). E. Apoptosis (measured by annexin-V FITC) in gemcitabine-resistant MiaPaCa-2 cells. Cells were 
treated with QUER, GEM or their combination, compared with untreated Cont. The effect of the combination was markedly 
greater than gemcitabine alone (statistics not performed). From Lan et  al. (62). F. Tumor volume in a xenograft model of human 
primary PDAC cells. AsanPaCa cells were implanted into chick embryos and left untreated (Cont) or treated with QUER. In a 
parallel experiment, the cells were processed so as to silence miR-let-7c (miR2), or its negative control (miR1). MiR2 and QUER 
treatment decreased tumor volume significantly compared to the relative controls (P < 0.01). From Nwaeburu et  al. (65).



1146 M. B. A. DJAMGOZ AND V. JENTZSCH

Figure 6. E ffects of a dietary compound on PDAC: Sulforaphane. 
A. Kaplan-Meier analysis of cumulative survival of PDAC 
patients (undergoing palliative chemotherapy). Patients were 
treated with a sulforaphane preparation (n = 29, solid line) 
compared with placebo (n = 11, dotted line). Plus signs indicate 
patients who were lost to follow-up. The shaded areas denote 
95% confidence intervals (dark gray for treatment, light gray 
for placebo). From Lozanovski et  al. (73). B. Effects of 72-hour 
pretreatment of pancreatic CSC-like cells with sulforaphane 
(SFN), gemcitabine (GEM) and their combination on volume 
of tumors formed by subsequent injection (subcutaneous) into 
nude mice. Time indicated is from the day of inoculation. 
Control mice (Cont) were injected with untreated cells. 
Gemcitabine delayed tumorigenesis and its effect was poten-
tiated by co-treatment with sulforaphane, suppressing tumor-
igenesis completely during the experimental period. 
Sulforaphane alone was also effective in completely suppress-
ing the tumorigenesis. The data points for SFN and SFN + GEM 
(circles on the horizontal axis) were indistinguishable. From 
Kallifatidis et  al. (74), where further details can be found. C. 
Effect of combining sulforaphane (SFN) with two doses of 
irradiation, 2 and 6 Grays (Gy), on clonogenic viability (“sur-
vival”), relative to control (100%). Four different cell lines were 
used (AsPC-1, BxPC-3, MiaPaCa-2 and Panc-1), each indicated 
as a histobar. The effects of the combination were clearly 
greater than radiotherapy alone (formal statistics not per-
formed). Modified from Naumann et  al. (75).

its anti-proliferative and pro-apoptotic effects and 
reduced tumor weight (70). In combination with gem-
citabine, quercetin had a noticeably (ca. two-fold) 
greater effect on proliferative activity. In contrast, the 
additional effects of quercetin combined with gem-
citabine on apoptosis and tumor weight were modest 
(ca. 10%). However, these effects did not reach sig-
nificance, probably due to the limited number of 
animals used (n = 6) and the inherent variability of 
in vivo testing especially with combinations of 
agents (70).

In conclusion, the evidence is consistent that quer-
cetin suppresses PDAC and potentiates the effect of 
gemcitabine in vitro. In vivo, also, quercetin produces 
noticeable anti-PDAC effects, but more work is 
required to substantiate the evidence for the added 
benefit of combination with gemcitabine.

2.6.  Sulforaphane

Cruciferous vegetables, named as such for their 
cross-shaped flowers, are rich in sulforaphane (other 
active ingredients include indole-3-carbinol and 
3,3′-diindolylmethane). Sulforaphane-rich foods 
include broccoli, cabbage, cauliflower, brussels sprouts, 
collard greens and kale (Table 1A) (71). Appari et  al. 
showed that three servings of cruciferous vegetables 
per day was associated with a 50% decrease in PDAC 
risk (72). A more extensive meta-analysis of four 
cohort and five case-control studies also found that 
a high intake of cruciferous vegetables decreased 
PDAC risk significantly by some 20% (71). This was 
extended to a clinical trial (https://clinicaltrials.gov/
ct2/show/NCT01879878). Thus, Lozanovski et  al. 
reported that PDAC patients consuming sulforaphanes 
(freeze-dried broccoli) whilst undergoing palliative 
chemotherapy experienced improved survival albeit 
for limited time (Figure 6A) (73). A range of anti-
cancer modes of action has been associated with sul-
foraphane (76). In one study, indole-3-carbinol reduced 
the assembly of prostate cancer cells into organoids 
(77). This finding could be significant to PDAC due 
to some similarities with prostate cancer, especially 
hormone (insulin) sensitivity. Both are also cancers 
of affluence and express similar stem cell markers (78, 
79). Sulforaphane suppressed the genetic damage of 
carcinogens, induced apoptosis and inhibited prolif-
eration of PDAC cells, in culture as well as in vivo 
(80). Specifically, combining sulforaphane with “tumor 
necrosis factor-related apoptosis inducing ligand” 
(TRAIL) was able to reduce resistance to the drug 
(81). Furthermore, using a xenograft model of PDAC, 
synergy between sulforaphane and gemcitabine has 
been demonstrated in suppressing tumorigenesis and 

https://clinicaltrials.gov/ct2/show/NCT01879878
https://clinicaltrials.gov/ct2/show/NCT01879878
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this involved suppression of Notch signaling and can-
cer stem cells (CSCs) (Figure 6B) (74). Finally, com-
bining sulforaphane with radiotherapy suppressed 
PDAC cell viability by increasing cell cycle arrest 
(Figure 6C) (75). Interestingly, attempts are being 
made to develop stable synthetic variants of sulfora-
phane as anticancer drugs (https://evgen.com/).

In conclusion, the available evidence for sulfora-
phane is promising as regards its potential both as a 
preventative agent by itself as well as in combination 
with chemotherapy, including gemcitabine.

3.  Nutraceutical Agents

Nutraceuticals are defined generally as natural sub-
stances that are not a part of normal diet but can be 
formulated and consumed as extracts or supplements. 
We have identified four nutraceutical compounds for 
which there are promising therapeutic effects (in vitro 
and/or in vivo) against PDAC and in some cases the 
associated organs, especially the liver (82). These are 
listed in Table 1B alongside their chemical formulae, 
main modes of action/cellular effects and natural 
sources.

3.1.  Artemisinin

This compound is isolated from Artemisia annua, sweet 
wormwood, a herb commonly employed in traditional 
Chinese medicine against malaria (83). Artemisinin 
and its derivatives (e.g., dihydroartemisinin) produced 
a variety of in vitro and in vivo effects against PDAC, 
including inhibition of growth and induction of apop-
tosis (84–86). These effects have been associated with 
the upregulation of several miRNAs (83). It has also 
been suggested that artemisinin generates ROS to 
induce oxidative stress and thereby cell death in PDAC 
cell lines (87). Additionally, dihydroartemisinin 
increased T-cell proliferation and activity, which could 
promote an anticancer immune response (88). 
Importantly, dihydroartemisnin increased the sensitivity 
of PDAC in vitro and in vivo to therapies including 
gemcitabine and TRAIL (85, 89). In a xenograft model 
of PDAC, dihydroartemisinin significantly potentiated 
the effect of gemcitabine in supressing tumorigenesis 
by some 25% (Figure 7A) (85). Histochemical analyses 
of the tissues from the in vivo experiments showed 
that the enhancing effect of dihydroartemisinin involved 
suppression of proliferation and increased apoptosis 
(Figure 7B and C) (85). Additionally, dihydroartemis-
inin was able to sensitize liver cancer cells to gemcit-
abine in vivo, thereby further reducing tumor burden 
significantly (90).

In conclusion, artemisinin and its derivatives can 
produce anti-PDAC effects and potentiate the effec-
tiveness of gemcitabine. In addition, it may support 
liver function (Table 1B). Altogether, therefore, it has 
great promise for integration into chemotherapy 
of PDAC.

Figure 7. E ffects of a nutraceutical compound on PDAC: 
Artemisinin. A. Effects of dihydroartemisinin (2), gemcitabine 
(3) and their combination (4) on volume of pancreatic cancer 
tumors; compared with control (1). BxPC-3 tumors were xeno-
grafted in nude mice. Data are presented as means ± standard 
deviation. The effect of the combination was significantly 
greater than gemcitabine alone (P < 0.05). B & C. Effects of 
treatments on status of proliferation (B) and apoptosis (C) 
determined from tissue sections taken from the induced 
tumors in (A). Treatments were as follows: gemcitabine (GEM), 
dihydroartemisinin (DHA) and their combination (GEM + DHA), 
compared with control (Cont). Data are presented as 
means ± standard deviation. For both parameters, the effect of 
the combination was greater than the effect of gemcitabine 
alone (P < 0.05). From Wang, SJ. et  al. (85).

https://evgen.com/
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3.2.  Garcinol

This is a derivative isolated from Garcinia indica, a 
plant of the mangosteen family, commonly known as 
“kokum”. It is a potent inhibitor of histone acetyl-
transferases, a modulator of gene expression, both in 
vitro and in vivo. Garcinol could produce a variety 
of anti-PDAC effects, promoting apoptosis by increas-
ing activities of caspase-9 and caspase-3 In Vitro (91). 
By modulating the expression of miRNAs involved in 
chemoresistance, garcinol also allowed gemcitabine to 
become significantly more effective in suppressing 
proliferation and promoting apoptosis In Vitro (92). 
Importantly, garcinol could also suppress the 
self-renewal and tumor-forming ability of CSCs (93). 
Alone or in combination with gemcitabine, garcinol 
suppressed tumor growth in a transgenic (KPC) 
mouse model of PDAC (Figure 8A) (94). Furthermore, 
quantifying the stage of PDAC as pancreatic intraep-
ithelial neoplasia (PanIN), combined treatment resulted 
in disease remaining in earlier stages. Thus, compared 
with gemcitabine treatment alone, PanIN lesions of 
all grades were consistently fewer in the combination 
treatment (Figure 8B) (94).

In conclusion, the available evidence suggests con-
sistently that garcinol has significant effects against 
PDAC in vitro and in vivo and would seem ready to 
be tested in gemcitabine combination treatments.

3.3.  Thymoquinone

This is an active ingredient isolated from the black 
seed, Nigella sativa (Table 1B). It has been investigated 
for its anti-oxidant and anti-inflammatory activities 
against PDAC, both in vitro and in vivo, and was found 
to be effective without significant side effects (95). 
Thymoquinone also has anticancer including 
anti-metastatic properties (96). Mahmoud & Abdelrazek 
reviewed these properties as well as the hepatoprotec-
tive effects of thymoquinone (97). Specifically, in 
PDAC, thymoquinone downregulated the expression of 
the anti-adhesive protein MUC4, thereby leading to 
decreased cell motility (98). Several studies have sug-
gested a synergistic effect of thymoquinone in combi-
nation with gemcitabine. When these agents were 
combined in vitro, cell viability fell by more than 50% 
compared with monotherapy (Figure 9A) (99). In a 
xenograft model of PDAC, combination of thymoqui-
none with gemcitabine produced a significantly greater 
effect (by some 80%) on tumor weight compared with 
gemcitabine alone (Figure 9B) (99). This effect involved 
potentiation of caspase (3 and 9) activation, leading to 
apoptosis (100). This pro-apoptotic effect appeared to 

be specific to PDAC cells (101). Thymoquinone-induced 
histone acetylation was proposed to be the basis of its 
synergy with gemcitabine (102).

In conclusion, from the available in vivo combina-
tion evidence, supported by in vitro data, we conclude 
that thymoquinone has excellent potential to be incor-
porated into an integrated management regimen 
for PDAC.

3.4.  Emodin

This is a purgative resin from rhubarb (Polygonum cus-
pidatum), buckthorn and Japanese knotweed (Fallopia 
japonica) (Table 1B). By increasing activation of tumor 

Figure 8. E ffects of a nutraceutical compound on PDAC: 
Garcinol. A. Genetically engineered pancreatic cancer mouse 
model (KPC). Effects of treatment with garcinol (GAR), gem-
citabine (GEM) and their combination on tumorigenesis over 
five weeks, quantified as the percentage of tumors which 
increased in size (determined by MRI). The combination pro-
duced about a four-fold greater effect than gemcitabine alone 
(statistics not available). B. Treatments as in (A), showing effects 
on tumor progression, quantified as the number of observed 
PanIN1 and PanIN3 lesions (light and dark bars, respectively, 
emphasized as 1 and 3 in the control data). Data are presented 
as a percentage of the PanIN1 level in control (Cont). Compared 
with gemcitabine alone, the combination produced consistently 
greater effects on both PanIN lesions, but noticeably more on 
PanIN3. However, significance was not reached, probably due 
to the limited number of animals used in the study (n = 8 in 
each group) and the inherent variability of the pathology. 
Redrawn from data given in Saadat et  al. (94).
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suppressor genes via DNA demethylation, emodin sup-
pressed PDAC cell proliferation (103–105). In combined 
treatments in vitro, emodin “sensitized” a drug-resistant 
cell line to gemcitabine (Figure 10A) (105). In an 
orthotopic xenograft model of PDAC, emodin promoted 
the effect of gemcitabine in suppressing tumorigenesis 
(Figure 10B) (106). The effects of emodin involved 
increased apoptosis and inhibited angiogenesis with 
possible transcriptional control via NF-κB (106–109). 
Finally, in a mouse model of PDAC, emodin 
dose-dependently decreased metastasis to liver by up to 
ca. 50% whilst “normalising” miR1271 expression and 
inhibiting EMT (107). In vitro and in vivo, liver cancer 

itself benefited from emodin treatment which also 
enhanced the effectiveness of a biological (sorafenib) 
therapy (110). Finally, also in an in vivo mouse model, 
cachexia could be reversed by long-term treatment with 
emodin and this occurred through decreased hypoxia 
inducible factor (HIF) - 1α signaling (111).

In conclusion, emodin can produce beneficial 
effects against PDAC, as well as liver cancer, by itself 
and can potentiate the effectiveness of gemcitabine in 
vitro and in vivo. Thus, it could be considered for 
clinical application.

Figure 9. E ffects of a nutraceutical compound on PDAC: 
Thymoquinone. A. Effects of gemcitabine (1), thymoquinone 
(2) and their combination (3) on the viability of PANC-1 cells. 
All treatments produced dose-dependent reduction in viability. 
The effects of the combination were markedly greater than 
gemcitabine alone at all concentrations tested. Calculations of 
the “combination index” confirmed significant synergy. From 
Pandita et  al. (99), where further details can be found. B. 
Effects of thymoquinone (TMQ), gemcitabine (GEM) and their 
combination (GEM + TMQ), compared with control (Cont), in 
mice bearing orthotopically induced PANC-1 tumors. Data show 
effects on both tumor weight (lefthand axis, dark bars) and 
associated caspase-3 activity (righthand axis, light bars). In 
both cases, data are shown relative to the respective control 
level at 100%. For both parameters, the effects of the combi-
nation were significantly greater than treatment with gemcit-
abine alone (P < 0.01 for both). Replotted from data given in 
Mu et  al. (100).

Figure 10. E ffects of a nutraceutical compound on PDAC: 
Emodin. A. Bxpc-3 cells and their gemcitabine-resistant ver-
sions (Bxpc-3/Gem) (black and white bars, respectively). Effects 
of treatment of cells with emodin (EMO), gemcitabine (GEM) 
and their combination (GEM + EMO) on apoptosis. Data are 
plotted as a percentage of the control level for Bxpc-3 cells 
(at 100%). The effect of the combination was significantly 
greater than gemcitabine alone, but on the resistant cell line 
only (P < 0.05). The GEM-resistance of the Bxpc-3/Gem cell line 
was confirmed by significant lack of apoptotic response 
(P < 0.05). Replotted from data given in Zhang, W. et  al. (104). 
B. Orthotopically induced pancreatic cancer in mice, treated 
with GEM, EMO and their combination. Tumor weights (in 
grams) were determined and compared with tumor-bearing 
control animals treated with saline only (Cont). The effect of 
the combination was significantly greater than gemcitabine 
alone (P < 0.05). Modified from Lin, SZ. et  al. (106), where 
further details can be found.
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4.  Further Emerging Potential Complementary 
Agents

We should note that there are a number of other 
“agents” (dietary and nutraceutical) with anti-PDAC 
properties but for which evidence is mainly from In 
Vitro experiments and no In Vivo combination data 
are available. Such emerging agents are noted here 
with the expectation that the evidence in their favor 
could become stronger in time. Some examples of 
these emerging agents include the following.

4.1.  Lycopene

This is the red pigment that gives red and pink fruit, 
such as tomatoes, watermelons, pink grapefruit and 
guava their characteristic color. A meta-analysis of 18 
eligible studies concluded that lycopene intake and 
PDAC risk were inversely correlated (112). This con-
clusion was supported later by the mechanistic demon-
stration that lycopene induces apoptosis in PDAC cells 
(113). Thus, the overall evidence for the anti-PDAC 
role of lycopene is significant. However, it has never 
been tested in combination therapies. Lycopene can 
also protect against acute pancreatitis and diabetes 
(e.g., Refs. 114, 115). Accordingly, lycopene may cur-
rently be used in a preventative setting. Although it 
is not known if it would potentiate gemcitabine che-
motherapy of PDAC, it could reduce or even prevent 
the side effects of chemotherapy due to its antioxidant 
and anti-inflammatory properties (116, 117).

4.2.  Zinc

This is an essential mineral found naturally in high 
concentrations in oysters, crab, beans and pumpkin 
seeds. It is frequently mentioned as an anticancer 
agent but the evidence for its possible anti-PDAC 
effect is quite contradictory (118–120). This is prob-
ably due to the multi-faceted role of this metal as a 
structural component of many proteins and a co-factor 
in enzymatic reactions. Overall, a meta-analysis con-
cluded that high consumption of zinc was associated 
with a decreased risk of PDAC (121). Consistent with 
this, more recent evidence has concluded that zinc 
dyshomeostasis (caused by the dysfunction of zinc 
transporters) can contribute to the initiation and/or 
progression of various cancers, including PDAC (122). 
Accordingly, the zinc ionophore, clioquinol, was sug-
gested to be efficacious against PDAC (123). 
Furthermore, “Bhasma” (incinerated processed zinc 
widely used in Ayurveda for various ailments) could 
also be effective against PDAC (124). Finally, zinc 

could protect against cachexia in PDAC (125). While 
there is no evidence for possible synergy between 
chemotherapy and zinc, it has been deemed acceptable 
for treatment of liver disease (126, 127).

4.3.  Selenium

Selenium is a trace element that plants accumulate 
from soil and convert to organic forms. Thus, it is 
naturally present in many foods, especially Brazil nuts, 
seafood, pasta and eggs. Han X et  al. originally 
reported anti-PDAC effects of selenium (128, 129). A 
meta-analysis and a later nested case-control study 
found no adverse effect on PDAC but a negative asso-
ciation was apparent for patients with body mass 
index (BMI) higher than 25 (130, 131). Beneficial 
effects and no adverse effects have also been reported 
against diabetes (132–134). However, high-level con-
sumption could promote insulin resistance and should 
be avoided (135).

4.4.  Magnesium

Magnesium-rich foods include dark-green leafy veg-
etables, seeds, wholegrains, fish and nuts. A recent 
study revealed significantly lower levels of magnesium 
in urine of PDAC patients compared to healthy con-
trols (136). Consistent with this, a prospective cohort 
study showed that magnesium supplementation may 
help prevent PDAC (137). Mechanistic evidence sug-
gested (i) that Mg2+-permeant ion channels associate 
with PDAC (138) and (ii) that the Mg2+ transporter 
protein SLC41A1 could be a viable anti-PDAC target 
(139). Indirectly, also, magnesium may reduce the risk 
of PDAC through its well-established negative rela-
tionship with diabetes (140, 141).

4.5.  Plumbagin

This is a derivative of naphthalene obtained from the 
roots of the “chitrak” that has been used in Ayuverdic 
medicine for more than 2,500 years. A bioinformatics 
study revealed several “mainstream” cancer signaling 
mechanisms whereby plumbagin could affect survival, 
apoptosis and metabolism in PDAC cells (142). 
Indeed, experimentally, plumbagin has been shown to 
inhibit the growth of PDAC cells (including CSCs) 
and induce autophagy in vitro and in vivo and may 
target the tumor suppressor p53 (142–145). Most 
recently, Pandey et  al. showed that plumbagin induced 
apoptosis in PDAC cells both in monolayers and 
three-dimensional tumor spheroids (146). This effect 
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involved production of ROS and cleavage of caspases 
3 and 9. Work is ongoing to develop nanoparticles 
of plumbagin as an anti-angiogenic drug (147).

4.6.  Milk Thistle

This has been used as a traditional herbal remedy for 
almost 2000 years. Its active ingredient, silymarin 
(major constituent, silibinin/silybin) has been shown 
to inhibit proliferative activity and angiogenesis in 
models of PDAC (148). Silibinin also promoted via-
bility and promoted apoptosis and autophagy in 
human PDAC cells (149). These effects were mediated 
by increased “stress-activated protein kinase” (JNK/
SAPK) signaling. Used by itself, silibinin could sup-
press tumor growth and cachexia in in vivo mouse 
models of PDAC (150). Silibinin is also well known 
for its “hepatoprotective” property and for promoting 
liver regeneration (151). Indeed, a randomized phase 
two clinical trial on childhood acute lymphoblastic 
leukemia (ALL) undergoing chemotherapy employed 
in combination silymarin (milk thistle extract) with 
the aim of reducing liver toxicity and a positive effect 
was reported (https://clinicaltrials.gov/ct2/show/
NCT00055718) (151).

4.7.  Berberine

This is an isoquinoline alkaloid extracted from a vari-
ety of natural herbs (152). Its molecular targets 
include upregulation of tumor suppressor genes, acti-
vation of AMPK and downregulation of matrix metal-
loproteinase production, leading to decreased cellular 
proliferation and invasion (153). In vitro, berberine 
induced apoptosis and suppressed the CSC population 
in PDAC cell lines even more effectively than gem-
citabine (154, 155). Another study showed that ber-
berine inhibited PDAC cell viability by dysregulating 
cellular energetics by targeting citrate metabolism 
(156). In vivo, also, berberine could reduce tumor 
growth in mouse models of PDAC (157). In addition, 
berberine demonstrated insulin-regulating properties 
and could suppress PDAC also indirectly (158). 
Consistent with this, it could potentiate the therapeu-
tic effect of metformin (see section 5.2) (159).

4.8.  Ginseng

Panax ginseng (“ginseng”) is a perennial plant that 
grows in East Asia. It is a traditional medicinal herb 
with a unique family of active saponin ingredients 
called “ginsenosides”. It is available in various forms 

(e.g., fresh, white, steamed, acid-processed and fer-
mented) leading to a range ginsenoside compositions 
with diverse pharmacological properties (160). Yun & 
Choi found in an early case-control study concluded 
ginseng consumption would reduce the risk of PDAC 
and liver cancer (161, 162). Experimentally, extracts 
of ginseng (leaves, flowers and roots) and some 
nanoparticle preparations have been tested against 
various human PDAC cell lines and shown to inhibit 
cell viability, proliferation and angiogenesis whilst 
promoting apoptosis (e.g., Refs. 163–165). Some 
anti-PDAC effects have also been reported in vivo 
(166, 167). Furthermore, ginseng could delay the 
development of type 1 diabetes and pancreatitis, both 
PDAC risk factors, in rats (168, 169). Finally, ginseng 
has also been reported to enhance the effectiveness 
of in vitro gemcitabine (and some other chemother-
apeutic agents) on PDAC cells as well as liver, lung 
and prostate cancers (170–172).

5.  Drug Combinations

Drug combinations refer to more than one drug being 
taken together. Although this topic is outside the 
immediate scope of the current review, as another 
“combination,” we would like to highlight it here for 
awareness and possible benefit to patients (173). In 
fact, use of drug combinations is common in cancer 
therapy and is already applied to PDAC in the form 
of FOLFIRINOX. A novel approach is including in 
the combination a drug that has been developed and 
prescribed for conditions other than cancer (a practice 
known as “repurposing”). We highlight here two 
examples of such drug combinations.

5.1.  Aspirin

This is a natural agent used commonly against pain 
and inflammation. Its general health benefits including 
anticancer properties have been highlighted over many 
years (174, 175). However, caution has also been 
expressed as regards its possible detrimental side 
effects on uncontrolled high blood pressure, bleeding 
disorders, asthma and stomach ulcers (176, 177). As 
regards PDAC, evidence suggests that high and 
medium usage (one or more 75 mg tablet a day) may 
reduce the risk by as much as 50%, the risk of those 
who stop taking it subsequently increasing (178, 179). 
This is through its inhibition of the COX-2 enzyme 
which indeed is upregulated in PDAC and may pro-
mote the disease by enhancing inflammation, a risk 
factor for PDAC (180). A negative association between 

https://clinicaltrials.gov/ct2/show/NCT00055718
https://clinicaltrials.gov/ct2/show/NCT00055718
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aspirin use and PDAC risk was demonstrated from a 
meta-analysis (Figure 11A) (181, 183). The association 
was stronger with increased frequency and duration 
of aspirin consumption (178, 181, 184). The apparent 
time-dependent correlation could be due to the fact 
that development of PDAC begins long before its 
diagnosis so, to derive benefit, consumption of aspirin 
should start well before occurrence (185).

In terms of “combination therapy,” aspirin proved 
an effective adjuvant to gemcitabine in the treatment 
of PDAC in an in vivo transgenic mouse model (186). 
This study also showed that the combined treatment 
prolonged survival by ca. 30% over gemcitabine treat-
ment alone. In an extensive, combined in vitro and 
in vivo study, including cells taken from PDAC 
patients, aspirin (at clinical doses) enhanced the effec-
tiveness of gemcitabine in suppressing tumorigenesis 
(Figure 11B) (182). The effect involved induction of 
apoptosis, reduction of cell viability and expression 
of proteins involved in inflammation and stem cell 
signaling (182). This study also showed that the aspi-
rin + gemcitabine combination significantly prolonged 
the survival of mice, by some 40%, compared with 
gemcitabine alone (Figure 11C). Importantly, also, 
aspirin sensitized cells that were resistant to gemcit-
abine (182, 187). In a more recent phase 1b clinical 
trial, aspirin has been included as a part of an immu-
notherapy/vaccination regime against PDAC (Ref: 
CHUV-DO-0017_PC-PEPDC_2017) (188).

In conclusion, aspirin can be taken safely in a pre-
ventative setting and can also be used in combination 
with gemcitabine chemotherapy to improve treatment 
efficacy.

5.2.  Metformin

Metformin is the most common oral drug prescribed 
for type II diabetes (189). Epidemiological evidence 
suggests that diabetics treated with metformin are less 
likely to develop PDAC (190). Indeed, meta-analyses 
revealed that metformin treatment increased survival 
in diabetic PDAC patients as well as presumed 
non-diabetics (190, 191).

By inhibiting oxidative phosphorylation, metformin 
reduces levels of the energy rich compound adenosine 
triphosphate (ATP) in cells, which in turn downreg-
ulates signaling mechanisms involved in cellular sur-
vival and proliferation (192). Consistent with this, a 
study on a transgenic mouse model found that met-
formin reduced PDAC incidence (quantified by PanIN 
pathology) by up to 50% (193). Importantly, in in 

Figure 11. D rug combination: effects of combining aspirin 
with chemotherapy. A. Forest plot showing improved relative 
risk of pancreatic cancer resulting from taking aspirin. 
Diamond indicates the average and the spread of the data. 
From Qiao et  al. (181), where further details and primary 
data can be found. B. Effects of aspirin (ASP), gemcitabine 
(GEM) and their combination (GEM + ASP) on volume of 
tumor induced by orthotopic inoculation of PANC-1 cells in 
immunodeficient mice. There was a clear trend in the data, 
the combination producing a significant effect compared to 
the control (P < 0.05). Although a marked difference between 
the effects of GEM + ASP and GEM alone was apparent, this 
did not reach significance, possibly because of the limited 
number of experimental animals involved (n = 6). C. Data 
from the same experiment as in (B) showing survival fraction 
for tumor-bearing mice treated with ASP (2), GEM (3) and 
their combination (4); control data are indicated as (1). The 
combination treatment significantly improved survival com-
pared with GEM alone (P < 0.05). B and C, from Zhang, Y. 
et  al. (182).
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vivo mouse models of PDAC, metformin reduced CSC 
proliferation as well as infiltration and activation of 
tumor-associated macrophages which contribute to 
desmoplasia (194). Thus, metformin could induce 
stromal depletion and enhance penetration of a 
nanoparticulate form of gemcitabine (195).

There is also increasing evidence that metformin 
can enhance the effectiveness of gemcitabine (196, 197). 
Li, X. et  al. performed a meta-analysis of rather dis-
parate data and concluded that patients taking met-
formin (with or without chemotherapy) had improved 

overall survival compared with a control group not 
taking metformin (Figure 12A) (198). Subgroup analysis 
showed that the effect of metformin correlated with 
tumor stage and was associated with improved survival 
in patients who had surgery or locally advanced cancer, 
but not in patients with metastatic disease (198).

The apparent improvement of effectiveness of che-
motherapy by metformin is also supported by in vitro 
experiments involving several human PDAC cell lines 
(202, 203). In another study, even resistance to gem-
citabine was reversed by metformin, albeit in vitro 

Figure 12. D rug combination: effects of adding metformin to chemotherapy. A. Forest plot demonstrating hazard ratios asso-
ciated with use of metformin for pancreatic cancer patients. The average (indicated by the diamond) revealed significantly 
reduced risk (P = 0.01). Modified from Li, X. et  al. (198), where further details and primary data can be found. B. Effects of 
gemcitabine (GEM), metformin (MET) and their combination on tumor weight, compared with untreated controls (Cont), in a 
gemcitabine-resistant pancreatic cancer (BxG30) mouse xenograft model. Data are plotted relative to the control level at 100%. 
There was a clear trend, the combination producing a significant effect compared to the control (P < 0.05). Although a noticeable 
difference between the effects of GEM + MET and GEM alone was apparent, this did not reach significance. Replotted from data 
given in Suzuki et  al. (199). C. Kaplan-Meier survival analysis of KPC mice treated with control/sterile water (1), MET (2), GEM 
(3) and GEM + MET (4). There was a significant difference between the effects of the combination and GEM alone (P < 0.05), 
confirming the beneficial effect of the combined treatment. Modified from Qian et  al. (200). D. Effects combining metformin 
(MET) with irradiation (RAD) or RAD + GEM on clonogenic survival of MiaPaCa-2 cells. Survival was quantified as a percentage 
of total. Adding MET to both RAD or RAD + GEM produced a significant further decrease in survival (P < 0.05 for both compar-
isons). Modified from Fasih et  al. (201).
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(204). Only one in vitro study reported inhibition of 
the pro-apoptotic effect of gemcitabine (205). However, 
this study involved (i) murine cell lines and (ii) the 
concentration of metformin used (20 mM) was rather 
high (cf. Ref. 192). Also, in an in vivo mouse xeno-
graft model of PDAC, metformin demonstrated anti-
tumor activity against a drug-resistant tumor (199). 
Combination of gemcitabine with metformin gener-
ated a noticeably further reduction in tumor weight, 
compared with the effect of gemcitabine alone (Figure 
12B) (199). Furthermore, in xenograft and genetically 
engineered mouse models of PDAC, metformin 
enhanced significantly the effect of gemcitabine in 
improving survival (Figure 12C) (200). This enhance-
ment effect was suggested to involve inhibition of 
CSCs and suppression of angiogenesis (200, 206).

Synergistic effects of combining metformin with 
radiation (plus gemcitabine in some cases) were 
observed in PDAC cells in vitro (Figure 12D) (201). 
This “radiosensitization” effect was thought to involve 
AMPK (201, 202).

Several clinical trials are evaluating the anti-PDAC 
potential of metformin by itself and in combined 
administration with chemotherapy (gemcitabine and 
nab-paclitaxel) and radiotherapy. The trials that have 
been concluded so far were those on late-stage or 
gemcitabine-resistant disease and, unfortunately, did 
not find significant improvement by adding metformin 
(207, 208). Other trials are still to report.

In conclusion, there is promising preclinical evi-
dence that metformin can be added safely as an adju-
vant to chemotherapy of PDAC. Currently, this would 
appear more promising for early-stage disease.

6.  Future Perspectives and Conclusion

In our previous study, supported by clinical trial data, 
we identified six dietary and three nutraceutical agents 
for integration with gemcitabine chemotherapy of 
PDAC (16). Here, based upon more limited available 
evidence, we evaluated another 10 agents (six dietary 
and four nutraceutical) which, in due course, may be 
added to the kind of integrative scheme we presented 
earlier. In fact, remembering the direness of PDAC, 
these 10 agents could even be introduced into inte-
grated management now since, although the evidence 
in their favor is limited, there is no associated adverse 
effect. In addition to the incorporation of such agents, 
one should remember that integrative lifestyle factors 
should also be considered for completeness. These 
would include limited alcohol intake, no smoking, 
and regular exercise and avoiding obesity (16). In 
overall conclusion, cancer-causing processes can be 

suppressed, and current treatment methods can be 
potentiated significantly by integrating with comple-
mentary factors to the extent that it may ultimately 
be possible to live with cancer chronically (Figure 13) 
(209). In fact, any improvement to life expectancy 
would be hugely beneficial to PDAC patients as 
research continues intensely in this field and new 
clinical therapies as well as novel integration regimes 
can be expected.

In further evaluating the kinds of dietary and 
nutraceutical agents covered here, a number of issues 
should be born in mind. These were covered in some 
detail by Jentzsch et  al. (16). Some key issues are the 
quality of the agents and the possible personalized 
nature of their effects. Future research should aim at 
ascertaining such issues as well as determining the 
molecular mechanisms/modes of action of the emerg-
ing agents and, most importantly, extending the eval-
uations to clinical trials.

In overall conclusion, both existing and emerging 
evidence strongly suggests that introduction of com-
plementary agents and lifestyle factors into main-
stream treatment of PDAC can produce significant 
beneficial effects, as regards both disease status and 
its side effects (16, 210).
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