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The Mushroom Body of Adult Drosophila Characterized by GAL4 Drivers

Yoshinori Aso,1,2 Kornelia Grübel,2 Sebastian Busch,1,2 Anja B. Friedrich,1

Igor Siwanowicz,1 and Hiromu Tanimoto1,2

1Max-Planck-Institut für Neurobiologie, Martinsried, Germany
2Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Würzburg, Germany

Abstract: The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and

extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that

prominently label the mushroom body intrinsic neurons, which are known as ‘‘Kenyon cells.’’ Under one constant experimental

condition, we analyzed and compared the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource,

we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive

Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell

subtypes, the g, a?/b?, and a/b neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study

lays groundwork for functional dissection of the mushroom body.

Keywords: insect brain, morphology, GAL4/UAS system, expression database, Kenyon cells

INTRODUCTION

‘‘For approaching the enormous complexity of the
insect brain one may choose first to study the sensory
and motor periphery in the hope to finally work one’s
way up to the central processing stages of the brain or,
alternatively, one may parachute in the midst of the
jungle, experimentally altering the brain and try to
understand the concomitant changes in behavior’’

(Heisenberg, 1980).

The mushroom body (MB) is a major landmark in the

‘‘jungle’’ of the Drosophila brain (Fahrbach, 2006;

Heisenberg, 2003), consisting of thousands of intrinsic

and extrinsic neurons. Kenyon cells, the second-order

olfactory interneurons in Drosophila, constitute the

majority of the intrinsic neurons. Their cell bodies form

a pair of quadruple clusters at the dorsal posterior cortex.

Their extensive dendritic arborizations contribute to the

globular structure beneath the cell bodies, called the

calyx, in which the collaterals of the olfactory projection

neurons terminate (Stocker et al., 1990). The axon bundle

of the Kenyon cells further project anteriorly through the

pedunculus to the lobes. The lobes of the MB are

considered as the main output site of Kenyon cells, but

also receive many inputs from extrinsic neurons (Ito et al.,

1998; Tanaka et al., 2008; Johard et al., 2008).

Various behavioral and physiological functions that

the MB is known to support range from olfactory learning

to decision making under uncertain conditions. Its struc-

tural heterogeneity may anatomically reflect the organiza-

tion of circuits that are required to achieve an array of

distinct behavioral functions in one brain structure.

Drosophila Kenyon cells are roughly classified into

three subtypes by their projections in the lobes: the g, a?/
b?, and a/b lobe neurons in order of birth (Crittenden

et al., 1998; Jefferis et al., 2002). The g-neurons project

only to the medial lobe, while the a?/b? and a/b neurons

bifurcate at the anterior end of the pedunculus to project

to the medial and vertical lobes (Crittenden et al., 1998;

Ito et al., 1998). Recent studies revealed that a?/b? and a/b
lobes harbor further subdivisions (Strausfeld et al., 2003;

Tanaka et al., 2008; Yang et al., 1995). In addition to their

morphological distinction, these subtypes are differen-

tiated with respect to their gene expression, neurotrans-

mitter systems, connectivity to extrinsic neurons, and

behavioral functions (Keene & Waddell, 2007; Strausfeld

et al., 2003; Tanaka et al., 2008).

Compared to the other insect species with large

numbers of Kenyon cells (Leitch & Laurent, 1996; Neder,
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1959; Witthöft, 1967), the advantages of studying the

Drosophila MB are its smaller size with a conserved,

layered cellular organization (Mobbs, 1984; Rybak &

Menzel, 1993; Sjöholm et al., 2006; Strausfeld, 2002;

Strausfeld et al., 2003) and its amenability to genetic

manipulation (Venken & Bellen, 2005). This allows

counting, rather than only estimating, the total number

of Kenyon cells, and indeed, various studies have

reported total numbers based on direct counting or

extrapolation (Balling et al., 1987; Hinke, 1961; Ito &

Hotta, 1992; Lee et al., 1999; Mader, 2004; Technau &

Heisenberg, 1982; Technau, 1984). However, the average

numbers in these studies range approximately from 1,000

to 2,500. Although the precise number is required to

construct quantitative network models of the Drosophila
MB and to assess the integrity of the genetic manipulation

of Kenyon cells, no study has seriously addressed this

discrepancy.

Laboratory members at the Biocenter in Würzburg

have often witnessed Martin Heisenberg’s extraordinary

interest in determining the total number of Kenyon cells.

His ‘‘favorite’’ number was 2,500, which was published

in the early days of his laboratory (e.g., Technau &

Heisenberg, 1982). Martin asserted that counting the

fiber number in cross-sections of the posterior part of

the pedunculus from electron micrographs resulted in the

least errors, because 1) the fiber number represents the

cell number, since Kenyon cell axons do not bifurcate at

that level, and 2) the majority of thin and round fibers

represent Kenyon cells.

We decided to reexamine the total number of Kenyon

cells by using the GAL4/UAS system, since the cell type

can be readily discerned. An array of GAL4 drivers have

been identified with prominent expression in the entire or

specific subsets of the MB (MB-GAL4; Figure 1). The

specificity of GAL4 expression inside and outside the MB

is critical, especially for the interpretation of functional

manipulation when using MB-GAL4s (Ito et al., 2003).

Here, we show the expression patterns of 25 different

MB-GAL4s in the brain and the subesophageal ganglion

under one constant experimental condition. We present a

catalog that indexes the confocal micrographs of all

analyzed drivers. By counting GAL4-positive Kenyon

cells, we here endeavor to reveal the total number of

Kenyon cells. Further, we demonstrate the numerical

composition of the Kenyon cell subtypes.

MATERIALS AND METHODS

Fly Strains

Fly stocks were grown on standard Drosophila medium

(cornmeal, agar, molasses, yeast, and nipagin) under a

constant light-dark cycle (14/10 hours) at 258C and 60%

relative humidity. Twenty-five GAL4 strains were se-

lected from the literature (Figure 1). These drivers have

been used for behavioral, developmental, physiological,

and/or anatomical studies of Kenyon cells (Supplemental

Figure 1). To visualize the GAL4 expressing cells,

males of these GAL4 lines were crossed with females

of a reporter strain carrying multiple copies of

UAS-mCD8::GFP (G3). No specific labeling was de-

tected in the absence of a GAL4 driver (data not shown).

For the GAL4 drivers on the X chromosome (D52H,

NP3208, NP65, and NP7175), females of each driver

were crossed with G3 males to detect the expression in F1

males. For the double drivers, one driver strain was

crossed with another driver, and then F1 males hetero-

zygous for two GAL4 insertions were crossed with G3

females. The genotypes of F2 progenies were determined

with characteristic expression of each GAL4 line.

Immunohistochemistry

We examined flies between 5 and 10 days after eclosion

and analyzed at least 2 males and 3 females for each cross.

The brains were dissected in Ringer’s solution, fixed in

phosphate-buffered saline (PBS) containing 2% formal-

dehyde and 0.3% Triton X-100 (PBT; Sigma, St. Louis,

Missouri, USA) for 1 hour at room temperature and

subsequently rinsed with PBT three times (3�10 min-

utes). After being blocked with PBT containing 3%

normal goat serum (Sigma) for 1 hour at room tempera-

ture, the brains were incubated with the primary antibodies

in PBT at 48C overnight. The GAL4-expressing cells and

overall neuropils were stained with the rabbit polyclonal

antibody against green fluorescent protein (GFP) (1:1000;

Molecular Probes, Eugene, Oregon, USA; A6455) and the

mouse monoclonal antibody against Synapsin, a presy-

naptic protein (3C11; 1:20) (Klagges et al., 1996),

respectively. The brains were washed with PBT for 20

minutes three times and incubated with secondary anti-

bodies in the blocking solution at 48C overnight. The

employed secondary antibodies were Alexa Fluor488�
conjugated goat antirabbit (1:1000 or 1:500; Molecular

Probes) and Cy3-conjugated (1:250) goat antimouse IgG.

Finally, the brains were rinsed with PBT (3�20 minutes

� 1�1 hour) and mounted in Vectashield (Vector,

Burlingame, California, USA). For the quantitative ana-

lysis of the cell numbers, we stained the brains of different

genotypes in the same tube. Their genotypes were post-
hoc identified according to their expression patterns.

Confocal Microscopy

Frontal optical sections of whole-mount brains were taken

with confocal microscopy (Leica SP1, Leica, Wetzlar,
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Germany). Image stacks were collected at 1.5-mm inter-

vals with a 20X objective lens to cover an entire brain.

For cell counting, we collected confocal stacks at 0.8-mm

intervals with a 40X objective lens. The posterior region

of the MB was zoomed at such a magnification that all the

GAL4-expressing cell bodies are in a frame. The posterior

MBs in the left and right hemispheres were separately

scanned and analyzed. For the quantitative analysis,

brains were scanned with comparable intensity and offset.

Images of the confocal stacks were analyzed with the

open-source software (Image-J; National Institutes of

Health, Bethesda, Maryland, USA). To avoid overlooking

diffuse and/or weakly labeled structures, all pictures were

repeatedly examined by different experimenters.

Cell Counting

Confocal stacks of the magnified cell-body region were

first subjected to automatic marking of nuclei by a

combination of ImageJ plug-ins: ‘‘Particle analyzer’’

and ‘‘Cell counter’’. Particle analyzer, which was custo-

mized to recognize the circles (nuclei) by intensity

thresholding at multiple different levels, automatically

detected the nuclei of GAL4-expressing cells in each

confocal slice. According to the coordinate information,

the centers of the nuclei of the labeled cells were marked

by ‘‘Cell counter.’’ Subsequently, all the stacks were

reexamined manually to correct the errors in the automatic

detection. Labeled, but not Kenyon, cells or unlabeled

Figure 1. Expression pattern of 25 GAL4 lines. Summary of the expression levels of 25 MB-GAL4s in various brain areas defined by

anti-Synapsin immunostaining. Gray scale indicates subjectively evaluated signal intensity. Note that a higher level of fluorescent

signals in the certain brain area can result from larger population of GAL4 expressing cells and/or stronger GAL4 expression in each

cell. MB, mushroom body; c, core subdivision: s, surface subdivision; p, posterior subdivision; a, anterior subdivision; m, middle

subdivision; p, posterior subdivision; d, dorsal subdivision; AL, antennal lobe; CC, central complex; fb, fan-shaped body; eb, ellipsoid

body; no, noduli; pb, protocerebral bridge; OL, optic lobe; me, medulla; lo, lobula; lop, lobula plate; spr, superior protocerebrum; ipr,

inferior protocerebrum; LH, lateral horn; optu, optic tubercle; vlpr, ventrolateral protocerebrum; plpr, posteriorlateral protocerebrum;

vmpr, ventromedial protocerebrum; psl, posterior slope; pars in, pars intercerebralis; AN, antennal nerve; DE, deutocerebrum;

TR, tritocerebrum; SOG, subesophageal ganglion. References where these GAL4 drivers have been used are listed in Supplementary

Figure 1.
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Figure 2 (Continued)
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Kenyon cells surrounded by labeled cells were discrimi-

nated by their size, shape, location, fine neurites to the

calyx, and reporter signals from the cytosol and mem-

brane. Typically, one nucleus spanning different confocal

sections was automatically marked twice or three times in

the close vicinity. By manually checking duplicated

markers in neighboring slices, we subtracted these

redundant counts from the final number. Experimenters

counted the numbers of Kenyon cells without information

on genotypes. There was no statistical difference between

experimenters, which was verified by counting the same

samples (data not shown). The numbers of labeled

Kenyon cells were statistically compared by using multi-

ple pair-wise comparisons (t-test, followed by Bonferroni

correction).

RESULTS

Collection of the Expression of MB-GAL4 Drivers

The interpretation of genetic manipulation using MB-

GAL4 crucially depends on the expression pattern inside

and outside of the MBs. We, thus, systematically

reexamined the GAL4 expression of many published

MB-GAL4 drivers under one constant experimental

condition. We selected 25 MB-GAL4 drivers from the

literature and evaluated their expression patterns with

confocal microscopy (Figure 1; Supplemental Figure 1).

As a reporter gene, we chose multiple copies of UAS-
mCD8::GFP inserted in different genomic loci (G3).

Since CD8 is a membrane protein, GFP is targeted

predominantly to the plasma membrane of GAL4-expres-

sing cells. After immunostaining, we frequently noticed

that these multiple copies of the reporter construct enabled

visualization of weakly labeled cells that had been

overlooked in previous reports. Moreover, G3 is advanta-

geous for counting the number of labeled cells, since the

nuclei of the GAL4-expressing cells are clearly outlined

(e.g., Figure 8A).

A previous study showed that different reporter

genes, different staining conditions, and the insertion

site of a reporter gene may influence the results (Ito et al.,

2003). G3 can minimize such insertion-specific biases,

since there are multiple different insertions of UAS-
mCD8::GFP.

The expression patterns of MB-GAL4s in the brain

and subesophageal ganglion (SOG) are summarized in

Figure 1 and Supplemental Figure 1. By relative signal

intensity, we subjectively ranked the degree to which

fibers were resolved in various neuropils. Therefore, these

ranks are neither to indicate the absolute intensities nor to

compare the expression levels between different GAL4

drivers, but are rather to compare the signal intensities

within a sample. MB-GAL4s vary, to a great extent, in

terms of the specificity within the MB and the expression

outside the MB (Figure 1; supplemental Figure 1). In the

following sections, we describe the expression pattern of

these drivers. Based on the expression pattern within the

MB of female samples, we categorized them into five

groups: MB-GAL4s labeling the a/b lobes, a?/b? lobes, g
lobes, multiple lobes, and all of the lobes. Except for three

lines (NP7175, D52H, and 103y), expression pattern was

very similar in males and females.

As an Internet resource, we indexed representative

confocal data of all analyzed driver strains (‘‘der Pilz’’;

Figure 2. Drivers labeling the a/b neurons. Stereopairs show reconstructions of MB-GAL4s preferentially labeling the a/b neurons.

The applied color illustrates the depth (see scale bar [25 mm] for the color code). Because of the space limitation, labels of the neuropils

have been omitted from all figures. See also original confocal stacks for detail (http://mushroombody.net). Expression pattern was

indistinguishable between males and females, unless stated. (A) Female NP7175 exclusively innervated the a/bc lobes in the MB. It also

labeled the subesophageal ganglion, the cells in the medulla, and the processes in the tritocerebrum. See Figure 7A for the expression

pattern in the male. (B) NP6649 strongly labeled the a/bc, while the expression in the a/bs was weak. As in NP7175, the cells in the

medulla were strongly labeled. It also has expression in the dorsal giant interneuron (DGI) (Ito et al., 1997). (C) As in NP6649, the a/bc

were strongly labeled in 17d, while the expression in the a/bs was weak. In addition, weak labeling was occasionally detected in the pars

intercerebralis, cells located around the subesophageal ganglion, DGI, and large neurons located around the calyx and protocerebral

bridge. One very large neuron located ventrally to the calyx projects anteriorly and terminates in the superior and inferior

protocerebrum. Collaterals of this neuron may also project to the deutocerebrum. Similar neurons were labeled by NP3208, c739,

MZ1489, NP65, and c492b. Especially in MZ1489, their huge cell bodies are clearly visible (see G). (D) NP3208 specifically innervated

the a/bp. The accessory calyx is visible as a protrusion originating from the dorsal calyx. The paired giant neurons located ventral to the

calyx (see also the legend of C) and processes in the subesophageal ganglion were labeled. Further faint signals were detected in many

neuropils, including the optic lobes. (E) NP3061 labeled all over the a/b lobes. Occasionally, barely detectable signals were in the pars

intercerebralis, DGI, tritocerebrum, and subesophageal ganglion. NP3061 contained the least expression outside the MB in all the MB-

GAL4s analyzed here. (F) c739 strongly innervated the entire a/b lobes. Outside the MB, it labeled elements in a wide range of

neuropils, including local interneurons in the antennal lobe, the antennal nerve, ellipsoid body, a cluster of neurons projecting from/to

the optic lobes, and many other cells throughout the brain (see also Figure 1). (G) MZ1489 innervated the entire a/b lobe, though the

signal in the a/bc was less intense. Outside of the MB, it labeled a wide range of neuropils, including the pars intercerebralis, many cells

in the medulla, antennal nerve, paired giant neurons located ventral to the calyx (see also the legend of C), and many other cells

throughout the brain (see also Figure 1).
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http://mushroombody.net). This web-based database is

publicly available. Thus, readers are encouraged to

download and scrutinize the raw data by themselves,

rather than solely relying on the subjectively ranked

expression and brief description here.

Drivers Labeling the a/b Neurons

GAL4 expression in NP7175, NP6649, 17d, NP3208,

NP3061, c739, and MZ1489 in the MB was restricted to

the a/b neurons. NP7175, NP6649, 17d, and NP3208

labeled limited subdivisions (Figure 2A�2D). GAL4-

positive Kenyon cells in NP7175, 17d, and NP6649

preferentially innervated the core of the a/b lobes (a/

bc). Given the variable occupancy, the a/bc lobes are

likely to consist of multiple populations with concentric

organization (Figure 2; see also Tanaka et al., 2008).

Within the MB, NP3208 has its expression specifically

in the posterior division of the a/b lobes (a/bp), as

previously described (Tanaka et al., 2008). The a/bp

neurons have dendritic arbors specifically in the acces-

sory calyx, where the projection neurons do not directly

terminate (Tanaka et al., 2008). In NP7175, reporter

signals inside and outside the MB differed between the

sexes (Compare Figure 2A and Figure 7A). With

differences in expression levels among subdivisions,

c739, MZ1489, and NP3061 seemed to drive GAL4

expression in most, if not all, subdivisions of the a/b
lobes (Figure 2E�2G).

Driver Labeling the a?/b? Neurons

Among the MB-GAL4s we analyzed, only c305a had

selective expression in the a’/b’ neurons within the MB

(Figures 1 and 3). The expression was detected in all

subdivisions in the a?/b? lobes. NP65 and NP1131 labeled

the specific subtype of the a?/b? lobe (i.e., the a?/b?a
neurons), but had additional expressions in other subsets.

Therefore, we categorized NP65 to the MB-GAL4s

labeling multiple lobes, although the expression within

the MB had been reported to be restricted in the a?/b?a
neurons (Tanaka et al., 2008). Similarly, NP2748 has

been described as a line specific for the a?/b? neurons

(Tanaka et al., 2008), but we observed reporter signals

also in the a/b and g neurons. These differences in

expression are presumably due to the employed reporter

genes.

Figure 3. Driver labeling the a?/b? neurons. Stereopair shows a reconstruction of c305a preferentially labeling the entire a?/b? lobes.

The applied color illustrates the depth (see scale bar [25 mm] for the color code). See also original confocal stacks for detail (http://

mushroombody.net). Outside the MB, it labeled broad neuropils, including the local interneurons in the antennal lobe, antennal nerve,

ellipsoid body, large paired neurons originating from the subesophageal ganglion, and many other cells throughout the brain (see also

Figure 1).

Figure 4. Drivers labeling the g neurons. (A, B) Stereopairs show reconstructions of MB-GAL4s preferentially labeling the g lobe. The

applied color illustrates the depth (see scale bar [25 mm] for the color code). See also original confocal stacks for detail (http://

mushroombody.net). (A) In the MB, expression of 1471 was restricted in the g neurons. Expression in the gd neurons was very weak, if any.

It labeled a broad range of neuropils outside of the MB, including the pars intercerebralis, antennal lobe, antennal nerve, and sensory

nerves. Large paired neurons located ventrally to the SOG and projecting to the deutocerebrum and/or tritocerebrum were also labeled.

Similar neurons are also found in NP65, H24, and 201y. (B) H24 strongly labeled the g neurons, with extremely weak additional expression

in the a/b neurons. Outside the MB, local interneurons in the antennal lobe, the medulla, ellipsoid body, deutocerebrum, and large paired

neurons located ventrally to the subesophageal ganglion showed the reporter signals. (C�G) Frontal views of the projections of three

consecutive confocal slices, including the gd lobe. In the left panels, the GAL4-positive processes (green) are shown with counterstaining

of neuropils (anti-Synapsin; magenta). The right panels show only the reporter channel of the same stacks (black). In these sections, the g
lobe occupies the most dorsal part, while the b lobe occupies the most ventral part. The b? lobe typically lies in between them. Arrows

indicate the medial end of the gd subdivision. 1471 labeled the main part of the g lobe, but not the gd subdivision (C), whereas the

expression both in the gd subdivision and the main part of the g lobe was seen in H24 and MB247 (D and E). (F) c320 labeled the gd

subdivision without labeling the main g lobe. (G) c305a specifically labeled the a?/b? lobe, but not the gd subdivision. Scale bar�25 mm for

C�G.
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Figure 4 (Continued)
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Figure 5 (Continued)
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Drivers Labeling the g-Neurons

H24 and 1471 preferentially marked the g lobe within the

MB (Figure 4). With G3, H24 additionally labeled the a/b
neurons weakly. Also, 1471 had selective expression in

the g neurons of the MB, as originally reported (Isabel

et al., 2004), although occasionally it seems to drive

additional expression in the a/b neurons (Keleman et al.,

2007). Further, 1471 seemed not to include all of the

g neurons, since the reporter expression in the dorsome-

dial tip of the g lobe was conspicuously weak (Figure 4C

and 4D). To distinguish this dorsal subdivision from the

rest of the g lobe (main part), we named it ‘‘gd.’’ Does

this subdivision belong to the g neurons? We magnified

the corresponding region of the gd in MB247, c320, and

c305a (Figure 4E�G). MB247 labeled this part, but not

the a?/b? lobes (Figure 4E). c320 had innervation there,

but not in the rest of the g lobe (Figure 4F). c305a labeled

the entire a?/b? lobes, but not the gd (Figure 4G). These

results indicate that the gd is supplied by a subpopulation

of the g neurons, but not the a?/b? neurons.

Drivers Labeling Multiple Types of Kenyon Cells

In NP1131, 201y, MB247, D52H (female), NP65, and

c320, there was expression in many, but not all, the MB

lobes (Figures 1 and 5). NP1131 selectively labeled the

g and a?/b?a neurons in the MB (Figure 5A). Also, 201y

had expression in the g and a/bc neurons (Figure 5B).

MB247 and D52H (female) strongly marked the a/b and

g neurons. MB247 and D52H (female) exhibited an

unusually low level of background expression (Figure

5C and D). For both lines, there was very little, if any,

expression in a?/b? neurons. In D52H the expression

showed a sexual difference in the MB. The males of

D52H additionally strongly expressed the reporter in the

a?/b? lobes (compare Figure 5D and Figure 7B). NP65

and c320 labeled subsets of the a/b and a?/b? neurons

(Figure 5E and 5F). In NP2748 and female 103y,

reporter signals were detectable in the all lobes, although

very weak in some subdivisions (Figures 1 and 5).

GAL4 Drivers Labeling All Lobe Systems

c309, c772, c747, 30y, c492b, 238y, and OK107 labeled

the a/b, a?/b?, and g lobes. OK107 covered all the

subdivisions of all the lobes, whereas, in the other drivers,

the expression in one or more subdivisions of a lobe

system was weak or undetectable. For instance, the

expression of c309 was strong in a/b and g lobes, but

weak in the a?/b? lobes (Figure 6A). All drivers in this

group had significant GAL4 expression outside the MB

(Figure 1 and 6). Therefore, functional manipulation of all

lobe systems in the MB might require either a combination

of selective GAL4 drivers with little additional expression

or different MB-GAL4s covering all lobe systems with

nonoverlapping expressions outside the MB. Based on the

expression in the lobes, it is possible that some of these

drivers (e.g., OK107) genetically label all Kenyon cells.

Three MB-GAL4s, NP7175, D52H, and 103y,

showed clear sexual differences in their expression

patterns (Figures 1 and 7). For NP7175 and D52H, a

cause of the difference in reporter expression might be

because the GAL4 insertions are on the X chromosome.

Compared to the female, male 103y more strongly labeled

the a?/b? and g lobes (Figure 5G and 7C).

Figure 5. Drivers labeling multiple types of Kenyon cells. Stereopairs show reconstructions of MB-GAL4s preferentially labeling the

multiple types of Kenyon cells. The applied color illustrates the depth (see scale bar [25 mm] for the color code). Some lines exhibited

detectable expression in all types of Kenyon cells, but were categorized into this group, because expression in certain subdivisions was

remarkably weak. See also original confocal stacks for detail (http://mushroombody.net). (A) NP1131 labeled the a?/b?a and g lobes.

Additional expression was seen in the ellipsoid body, subesophageal ganglion, pars intercerebralis, large interneurons connecting the

optic lobe and the central brain, and other cells distributed in the brain (see also Figure 1). (B) 201y labeled the a/bc and g neurons.

Outside the MB, additional expression was seen in the several glomeruli in the antenna lobe, pars intercerebralis, large paired neurons

located ventral to the subesophageal ganglion, DGI, and other neurons. (C) MB247 strongly labeled the a/b and g neurons with very low

background expression. Expression in the a/bc was weaker than in the other a/b subdivisions. Additional expression was detected in the

cells in the lobula plate and surface glia. (D) Female D52H strongly labeled the a/b and g neurons with very low background expression.

Expression in the a/bc was weaker than in the other a/b subdivisions. See Figure 7B for the expression pattern in the male. (E) NP65

labeled the a/bs, a/bc, and a?/b?a neurons. We observed reporter signals also in the antennal lobe, deutocerebrum, tritocerebrum, DGI,

large paired neurons located ventral to the calyx (see also the legend of Figure 2C), two large neurons projecting medially to the

subesophageal ganglion, and many cells throughout the central brain. (F) In c320, the a/b, a?/b?, and gd lobes were labeled (Figure 3F).

Expression in the a?/b?m neurons was weaker than the rest of a?/b? subdivisions. Outside the MB, it labeled the majority of neuropils.

Among them, relatively strong expressions were observed in surface glia, the protocerebral bridge, subesophageal ganglion, optic lobes,

and superior protocerebrum (see also Figure 1). (G) Female 103y labeled the a/b neurons strongly. Outside the MB, it labeled the optic

lobes, inferior and superior protocerebrum, cells on the subesophageal ganglion, surface glia, and many cells in the posterior cortex. See

Figure 7C for expression pattern in the male. (H) In NP2748, weak reporter signals were observed in all of the lobes. It also labeled the

medulla, pars intercerebralis, DGI, surface glia, and many other cells.
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The Number of Genetically Labeled Kenyon Cells

The total number of Kenyon cells in the Drosophila MB

was reported to range from 800 to 2,900 (Balling et al.,

1987; Hinke, 1961; Ito & Hotta, 1992; Lee et al., 1999;

Mader, 2004; Nikolaı̈ et al., 2003; Technau & Heisen-

berg, 1982; Technau, 1984). The variability mainly

depends on the method of counting and estimation.

MB-GAL4s with expression in all lobe systems (Figure

6) prompted us to address how many Kenyon cells of the

Drosophila MB can be marked by the genetic method.

Consistent with their expression in the lobes, the

largest numbers of Kenyon cells were stained in OK107

and 238y: on average, 1,917 and 1,898 cells, respectively

(Figure 8B). These numbers were, however, smaller than

those in some reports (Balling et al., 1987; Hinke, 1961;

Technau & Heisenberg, 1982; Technau, 1984). To

examine the highest possible number of genetically

labeled Kenyon cells, we generated the flies carrying

both OK107 and 238y (OK107/238y) and counted the

labeled cells. If these single drivers incompletely labeled

Kenyon cells with different patterns, the number of the

GAL4-positive cells in OK107/238y could exceed that

of each single driver. In OK107/238y, we counted

1,975 labeled Kenyon cells, on average, but not signifi-

cantly higher than OK107 or 238y alone (P�0.05; n]7;

Figure 8B).

Likewise, the numbers of GAL4-expressing Kenyon

cells were counted in MB-GAL4s with expression in

specific subdivisions of the lobes (Figure 8B). Interest-

ingly, the expression pattern in the lobe does not always

predict the number of the labeled neurons. For example, the

expression patterns of NP3061 and c739 were similar in the

a/b lobes (Figure 1, 2E, and 2F), whereas the number of

GAL4-expressing Kenyon cells of NP3061 was signifi-

cantly less than that of c739 (PB0.001; n]5; Figure 7B).

Similarly, the combination of MB247/NP6649 only

slightly increased the number of labeled cells, compared

to MB247 alone, indicating that weaker expression in the

a/bc of MB247 was sufficiently strong for cell counting.

The MB-GAL4 that labels the smallest population in the

analyzed lines was NP3208. The expression was detected

in 76 cells, on average, and all of them projected to the a/bp

(Tanaka et al., 2008) (Figure 1 and 2E).

Based on these results, we next examined the total

number of genetically labeled Kenyon cells by summing up

the numbers of MB-GAL4s labeling specific lobes. If the

marked cell population in OK107/238y did not represent

the entire Kenyon cells, the sum could exceed 1,975. Since

we counted, on average, 1,002, 370, and 671 cells for c739

(a/b), c305a (a?/b?), and H24 (g), respectively, the sum of

these lines was 2,043 cells, which matches the number in

OK107/238y with�3% of a mean difference (Figure 7).

The sum of MB247/NP6649 (a/b and g; 1,630 cells) and

c305a (a?/b?; 370 cells) also matched the number in

OK107/238y (2,000 vs. 1,975 cells). Taken together, we

conclude the average total number of Kenyon cells of the

MB that can be genetically labeled is 2,000.

DISCUSSION

The Number of Drosophila Kenyon Cells

How many Kenyon cells does adult Drosophila have? With

genetic labeling and confocal microscopy, we reached a

number of 2,000 Kenyon cells per hemisphere (Figure 8B).

This is roughly, on average, 500 cells fewer than previous

Figure 6. GAL4 strains labeling all of the lobes. Stereopairs show reconstructions of MB-GAL4s labeling all of the lobes. The applied

color illustrates the depth (see scale bar [25 mm] for the color code). Since most of the lines in this category exhibited expression in

many neuropils, we describe only strong signals here (see also Figure 1). See also original confocal stacks for detail (http://

mushroombody.net). (A) In the MB, c309 strongly labeled the a/b and g neurons. We also observed very weak expression in the a?/b?
neurons. Outside the MB, the majority of the labeled neuropils included the antennal lobe, tritocerebrum, subesophageal ganglion, and

optic lobes (see also Figure 1). Additionally, many different sensory nerves and the cervical connectives were stained. (B) c772

preferentially labeled the a/bp, a/bs, and g neurons with weaker expression in the a/bc and a?/b? neurons. It also labeled the optic lobes,

ventrolateral protocerebrum, local interneurons in the antennal lobe, and many cells on the subesophageal ganglion. (C) As in c772,

c747 labeled the a/bp, a/bs, and g neurons strongly and the a/bc and a?/b? neurons weakly. Outside the MB, we observed reporter

signals in the optic lobes, antennal nerve, local interneurons in the antennal lobe, pars intercerebralis, and many cells on the

subesophageal ganglion. (D) In 30y, all the MB subdivisions were innervated. It also labeled the optic lobes, antennal lobe, pars

intercerebralis, and many cells surrounding the subesophageal ganglion. It also labeled a cluster of small neurons that are located

dorsolateral to the optic tubercle and that project first ventrally and extend laterally toward the dorsolateral edge of the ventrolateral

protocerebrum. Similar neurons were observed in 238y. (E) c492b labeled all types of Kenyon cells, although expression in the gd

neurons was relatively weak. Compared to other lines in this category, expressions outside the MB were less pronounced. We observed

reporter signals in the pars intercerebralis, local inter neurons in the antennal lobe, deutocerebrum, subesophageal ganglion, and large

paired neurons located ventral to the calyx (see also the legend of Figure 2C). (F) All types of the Kenyon cells were strongly labeled by

238y. Outside the MB, this line labeled the optic lobe, superior protocerebrum, pars intercerebralis, and many neurons surrounding the

entire subesophageal ganglion. (G) In OK107, all the subdivisions of the MB were strongly and uniformly labeled. Outside the MB, we

observed strong reporter signals in the optic lobe, antennal lobe, pars intercerebralis, and cells on the subesophageal ganglion.
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reports, where the numbers of cell bodies (2,380�2,640)

and axon fibers (2,140�2,990) were estimated and counted,

respectively (Balling et al., 1987; Hinke, 1961; Technau &

Heisenberg, 1982; Technau, 1984).

We demonstrated that any combinations of MB-

GAL4s with complementary or overlapping patterns

covering the entire lobe systems failed to exceed 2,000

(Figure 8B). This is consistent with the number of cell

bodies in one MB neuroblast clone, using elav-GAL4 or

OK107 (i.e.,�500 cells) (Lee et al., 1999). It is still

possible to assume that MB-GAL4s systematically fail to

label 500 Kenyon cells. One parsimonious explanation for

the discrepancy could be a retardation of Kenyon cell

proliferation induced by overexpression of mCD8::GFP.

This possibility can be clarified by counting the number

of Kenyon cell fibers at the posterior pedunculus. Indeed,

we observed that the fiber number in OK107/G3 was

smaller than that in the wild-type Canton-S on electron

micrographs (A.B.F. and Y.A., unpublished observation).

In any event, this study suggests that approximately 2,000

Kenyon cells might be the limit that can be labeled by the

GAL4/UAS system.

Alternatively, the lack of cell type�specific labeling

in the previous studies could obscure the total numbers.

Indeed, MB-APL, one of the non-Kenyon-cell intrinsic

neurons, and GABA-ergic neuron(s) have thin parallel

fibers projecting through the pedunculus as Kenyon cells

do (Tanaka et al., 2008; Yasuyama et al., 2002). In our

Figure 7. GAL4 strains with sex-dependent difference. Stereopairs show reconstructions of MB-GAL4s with sex-specific reporter

expression. The applied color illustrates the depth (see scale bar [25 mm] for the color code). See also original confocal stacks for detail

(http://mushroombody.net). (A) Compared to the females, male NP7175 labeled slightly broader a/bc (Figure 2 A). In addition to the

background expression seen in the female, surface glia was strongly labeled. (B) In contrast to the female, male D52H additionally

labeled the a?/b? neurons. Moreover, the innervation of one glomerulus by the olfactory receptor neurons was more pronounced in the

male. Otherwise, background expression was unusually low as in females. (C) Male 103y labeled all subtypes of Kenyon cells, whereas

in the female, the expression in the a?/b? and g lobes was very faint (see Figure 5G). In addition, expression in surface glia and dense

terminals in the superior medial protocerebrum were less pronounced in males. Outside the MB, it labeled the processes in the medulla

and lobula, middle superior lateral protocerebrum, local interneurons in the antennal lobe, and many neurons supplying the

subesophageal ganglion and tritocerebrum.

Figure 8. The number of genetically labeled Kenyon cells. (A) Single confocal sections through the calyx and cell-body cluster of

Kenyon cells as representative pictures of the counting procedure (c739 and NP7175). Nuclei of Kenyon cells are marked with red,

while non-Kenyon cells, unlabeled cells, or spaces between cells are marked with yellow. The arrow and arrowhead indicate

microglomeruli innervated and not innervated by labeled Kenyon cells, respectively. Scale bar�25 mm. (B) The numbers of genetically

labeled Kenyon cells in different MB-GAL4 drivers of the females. Labeled Kenyon cell subtypes are indicated below (see also Figure

1). The label in gray shows weak expression. See the legend of Figure 1 for abbreviations. N�5�8. Error bars represent standard error

of the mean. (C) Model of the numerical composition of the Drosophila MB. The g, a?/b?, and a/b neurons, respectively, contribute to

33, 18, and 49% of�2,000 Kenyon cells. One circle and line represents�75 cells. Approximately 150 iACT projections neurons

terminate on the Kenyon cells, except for the a/bp neurons (rightmost line).
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confocal micrographs, we counted at least 45 fibers at the

caudal pedunculus derived from a single MB-APL (K.G.

and Y.A., unpublished observation). Without specific

labeling, such thin fibers, but not of Kenyon cells, might

potentially lead to an overestimation of the total fiber

number. Lack of specific labeling might have obscured

c739 NP7175 (female)

Figure 8 (Continued)
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previous cell-body counting (Hinke, 1961; Technau &

Heisenberg, 1982). Although Kenyon cell nuclei look

distinct from those of surrounding cells without cell type�
specific labeling, such a border turned out to be not

always reliable after genetic labeling of Kenyon cell

nuclei (data not shown).

It is noteworthy that there also exist studies that have

estimated significantly smaller numbers of Kenyon cells

than this one (Ito & Hotta, 1992; Mader, 2004). Mader, in

his diploma thesis, analyzed 19 different MB-GAL4s by

expressing nls-lacZ. His tallies were systematically fewer

than ours (e.g., 825 nuclei in MB247; Figure 8). This

difference might be due to a mere technical pitfall. For

instance, there could be a significant overlap of multiple

Kenyon cell nuclei due to the usage of the 20X objective

lens, leading to lower Z resolution in confocal micro-

scopy. Based on the number of Kenyon cells that

incorporated BrdU in defined time periods, another study

estimated that MB neuroblasts give rise to 800�1,200

until adulthood (Ito & Hotta, 1992). Although we have no

clear explanation, the deviation might, again, be technical,

such as inefficient BrdU incorporation.

Considering the production of 2,000 neurons in the

adult, using the typical cell-division scheme of the

neuroblast, the cell cycle of MB neuroblasts must be

unusually short*within an hour (2,000 cells during�200

hours of MB neuroblast proliferation). Thus, one or more

of the assumptions of the neuroblast division might not be

applied to the Kenyon cell proliferation. For instance, the

ganglion mother cells from the MB neuroblasts might

exceptionally divide more than once, not as in many other

neurons in insects.

Seminal papers from the Heisenberg group showed

that the structure and the fiber number of the MB undergo

significant changes with many developmental and envir-

onmental factors, such as different wild-type strains

(Balling et al., 1987; Heisenberg et al., 1995; Technau,

1984). Thus, direct comparison of these different counting

methods under a constant experimental condition could,

at least partially, settle the dispute on the total number of

Drosophila Kenyon cells.

The total Kenyon cell number may have important

implications when it comes to devising a quantitative

network model of the Drosophila MB. For example, it

might be important to reconsider the connectivity of the

2,000 genetically labeled Kenyon cells with the projection

neurons at the calyx. Approximately 150 iACT projection

neurons are the major source of afferents to the calyx and

were calculated to supply in the calyx�1,000 presynaptic

boutons, which comprises the cores of microglomeruli

(Jefferis et al., 2007; Stocker et al., 1990; Turner et al.,

2008). Based on the electron microscopic data (Yasuyama

et al., 2002), Turner et al. estimated 30 active zones, on

average, at a single bouton (Turner et al., 2008). Since

each Kenyon cell has dendritic arbors on five micro-

glomeruli, on average (Zhu et al., 2003), each projection

neuron bouton could be presynaptic to 10 different

Kenyon cell claws (�2000 cells�5 terminals/1,000

microglomeruli). Given that several postsynaptic sites

can be assigned to a single presynaptic release site

(Prokop & Meinertzhagen, 2005; Yasuyama et al.,

2002), each Kenyon cell claw, on average, may have

more than six postsynaptic sites (�multiple postsynapses

[]2]�30 active zones in a projection neuron bouton/10

Kenyon cell claw). These numbers, however, should be

experimentally verified, such as by the high-resolution

analysis of Kenyon cell dendrites and the reconstruction

of microglomeruli with electron microscopy.

Composition of the MB

In addition to the total number of Kenyon cells, this study

reveals, for the first time, the proportion of genetically

labeled Kenyon cells contributing to subdivisions. This

opens new questions that are of direct functional relevance.

What is the minimal set of MB subdivisions to which

reproducible genetic manipulation can be applied? Can all

lobe systems similarly receive odor information repre-

sented in the calyx? More generally, how is the Drosophila
MB composed of different Kenyon cell subtypes?

According to the numbers of Kenyon cells contribut-

ing to subdivisions, we estimate that the g neurons, a?/b?
neurons, and a/b neurons occupy 33 (671 cells), 18 (370

cells), and 49% (1,002 cells) of the total labeled Kenyon

cells (Figure 8). This composition fits well with the

volumetric ratio of the cell bodies of MB neuroblast

clones: 35, 23, and 42%, respectively (Lee et al., 1999).

The lack of the g neurons born before the induction of

neuroblast clones might be compensated by the larger cell

bodies of early-born Kenyon cells (Maurange et al, 2008).

Interestingly, the cell number of each subtype does not

seem to reflect the volume of each lobe, implying

heterogeneous synaptic terminals of the subtypes.

Subtype-specific MB-GAL4s allowed us to estimate

the smallest population of Kenyon cells; the a/bc and

a/bp neurons in the a/b lobes have at least 203 (10%;

NP7175) and 76 (4%; NP3208) cells, respectively. Given

that the a/bp neurons exceptionally arborize in the

accessory calyx, the a/bc lobes might contain the least

Kenyon cells that project to the main calyx. For the gd and

a?/b? neurons, we could not calculate the number of each

subtype due to the lack of a specific driver line. Yet, we

estimated the numbers of the gd and a?/b?a neurons to be

approximately 55 and 98, respectively (H24 � 1471 and

NP1131 �H24 for the gd and a?/b?a neurons, respectively).

It may be important to consider whether each

subdivision can represent all odors by contacting all the

terminals of the projection neurons in the calyx. To

completely cover 1,000 presynaptic boutons with five
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dendritic terminals of each Kenyon cell, at least 200

Kenyon cells are theoretically required (�1,000 micro-

glomeruli/5 terminals). Therefore, 203 of the a/bc neurons

could receive odor information from all microglomeruli,

but at least two of the three subtypes in the

a?/b? neurons (370 cells in total) could not. If we assume

that the projection neurons innervating the same antennal

lobe glomerulus convey identical information, only 10

Kenyon cells, in principle, could sufficiently receive the

entire odor repertoire, given�50 glomeruli in the antennal

lobe (50 different terminals�5 claws�10 Kenyon cells).

However, in practice, it seems unlikely that even 200 cells

cover all microglomeruli in the calyx, since each subtype

has spatial preference of dendritic terminals (Jefferis et al.,

2007; Lin et al., 2007; Tanaka et al., 2004). Consistently,

we also found microglomeruli not innervated in MB-

GAL4s that label 1,000 Kenyon cells (e.g., arrows and

arrowheads in the calyx of c739 in Figure 8A). Therefore,

we suppose that each subtype of Kenyon cells can have its

unique, yet overlapping, odor space.

Application of MB-GAL4s

According to the expression pattern in the lobes, c739 and

NP3061 have very similar, if not identical, patterns in the

lobes (Figure 2). However, the numbers of labeled

Kenyon cells are significantly different (ca. 300 cells

more in c739; Figure 8B). This indicates that expression

pattern in the lobes does not always predict the number of

genetically labeled neurons; genetic subpopulations of

Kenyon cells do not always correlate the morphological

subdivisions of the MB. Since only a few Kenyon

cells (�6%) represent each odor (Turner et al., 2008;

Wang et al., 2004), the small difference in the labeled

population may have a significant functional conse-

quence. Indeed, Akalal et al. (2006) found the differential

phenotypes of 17d and c739 on the memories of different

odor combinations (Akalal et al., 2006), although both

label the a/b neurons (Figure 2). Therefore, outcome of

genetic manipulation may vary with subtle difference in

the population of labeled cells in the target lobes.

Our comprehensive analysis revealed that most MB-

GAL4s have significant expression outside the MB. If the

spatial specificity is absolutely required, combinatorial

methods, such as ‘‘split GAL4’’ (Luan et al., 2006) or the

GAL80 enhancer-trap system (Suster et al., 2004), should

be applied to confine the effector-reporter expression to

the MB.

In addition to the spatial specificity, the expression of

MB-GAL4s analyzed here changes during development.

For instance, c739 is expressed broadly in the g neurons

during the larval stages (Kurusu et al., 2002). Therefore,

additional temporal control is favorable to circumvent

such a ‘‘developmental effect’’ and to restrict the

transgene expression to the adult (e.g., GeneSwitch or

the GAL80[ts] system) (McGuire et al., 2003; Oster-

walder et al., 2001; Roman et al., 2001).
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SUPPL. FIG. 1. EXPRESSION PATTERN OF 25

GAL4 LINES AND REFERENCE LIST

Summary of the expression levels of 25 MB-GAL4s in

various brain areas defined by anti-Synapsin immunos-

taining. Gray scale indicates subjectively evaluated signal

intensity. Note that higher level of fluorescent signals in

the certain brain area can result from larger population of

GAL4 expressing cells and/or stronger GAL4 expression

in each cell. Abbreviations: MB: mushroom body; c: core

subdivision: s: surface subdivision; p: posterior subdivi-

sion; a: anterior subdivision; m: middle subdivision; p:

posterior subdivision; d: dorsal subdivision; AL: antennal

lobe; CC: central complex; fb: fan-shaped body; eb:

ellipsoid body; no: noduli; pb: protocerebral bridge; OL:

optic lobe; me: medulla; lo: lobula; lop: lobula plate; spr:

superior protocerebrum; ipr: inferior protocerebrum; LH:

lateral horn; optu: optic tubercle; vlpr: ventrolateral

protocerebrum; plpr: posteriorlateral protocerebrum;

vmpr: ventromedial protocerebrum; psl: posterior slope;

pars in: pars intercerebralis; AN: antennal nerve; DE:

deutocerebrum; TR: tritocerebrum; SOG: subesophageal

ganglion. References: Original articles were sought using

Flybase (http://flybase.org), and we manually tried to

complement recent articles in addition. 1: (McGuire, Le,

& Davis, 2001); 2: (Peng, Xi, Zhang, Zhang, & Guo,

2007); 3: (Ramaekers et al., 2005); 4: (Masuda-Naka-

gawa, Tanaka, & O’Kane, 2005); 5: (Wu et al., 2007); 6:

(Fushima & Tsujimura, 2007); 7: (Connolly et al., 1996);

8: (Kurusu et al., 2002); 9: (Tanaka, Tanimoto, & Ito,

2008); 10: (Manoli et al., 2005); 11: (Awasaki & Ito,

2004); 12: (Boyle, Nighorn, & Thomas, 2006); 13: (H.

Gu & O’Dowd, 2006); 14: (Nicolai, Lasbleiz, & Dura,
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