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Abstract
In many past clinical studies in which hyperthermia enhanced the efficacy of radiotherapy, the tumor
temperatures could be raised only to 40–428C range in most cases. The heat-induced cell death,
cellular radiosensitization, and vascular damage induced by such mild temperature hyperthermia
(MTH) are likely to be insignificant despite the increased response of tumors to radiotherapy.
Heating rodent tumors at 40–428C was found to cause an enduring increase in blood flow and oxygen-
ation in the tumors. Recent studies with canine soft tissue sarcoma and human tumor clinical studies
also demonstrated that MTH improves tumor oxygenation, and enhances response of the tumors to
radiotherapy or chemoradiotherapy. The increased blood flow and vascular permeability caused by
MTH may also improve the delivery of various therapeutic agents such as chemotherapy drugs, immu-
notherapeutic agents and genetic constructs for gene therapy to tumor cells. MTH as a means to
potentiate the efficacy of radiotherapy and others warrants further investigation.
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Introduction

It is known that the intratumor microenvironment greatly affects the response of tumors

to treatments. Five major microenvironmental factors known to influence the response of

tumors to various treatments including hyperthermia are (i) Perfusion, (ii) Permeability, (iii)

pO2, (iv) pH and (v) Pressure (intratumor). These 5‘P’s greatly influence the response of

tumors to heating, and in turn they are altered by heating. Among these 5‘P’s, perfusion

or blood flow is probably most important in the hyperthermic treatment of tumors since

blood flow plays the major role in heat dissipation from tumors during heating and thus

heat-induced tissue damage [1–4]. Blood flow also influences the pO2 and pH of tumors,
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factors which greatly affect the response of tumors to radiotherapy and to certain

chemotherapy drugs.

One of the original rationales for the use of hyperthermia to treat tumors was that

tumor vasculature can be preferentially destroyed by heat relative to normal tissue vascula-

ture [1–7]. Indeed, the studies conducted in our laboratory and elsewhere clearly demon-

strated that the vascular beds in rodent tumors can be destroyed by heating at 42–438C
with minimal damage to normal tissue vasculature [1]. However, human tumor vasculature

is more mature than animal tumor vasculature and thus heating at temperatures higher

than 42–438C may be required to cause significant damage to human tumor vessels [8, 9].

Unfortunately, heating human tumors, particularly deep-seated tumors, to temperatures

sufficiently high enough to cause vascular damage using external heating devices is not an

easy task. In fact, in numerous clinical studies on the efficacy of hyperthermia against various

human tumors conducted during the last two decades, human tumor temperatures could

be seldom raised to cytotoxic levels, i.e., >42–438C [10–14]. These realizations strongly

suggested that the increased radiosensitization in human tumors by hyperthermia at

relatively mild temperatures does not result from thermal cell death and increased cellular

radiosensitization but most likely from improved tumor blood flow and tumor oxygenation

[10]. In this paper, we review what is known at present about the heat-induced changes

in blood flow and oxygenation in animal as well as human tumors and the implications of

these changes in the response of tumors to therapy, in particular, radiotherapy.

Hyperthermia-induced changes in tumor blood flow

Tumor vascular beds are made of thin capillary-like blood vessels, that are irregularly

dilated, bulged, constricted, twisted and sharply bent [3, 4, 15]. Consequently, blood

flow through such a chaotic capillary network is sluggish. Since the hastily formed tumor

blood vessels mostly lack smooth muscle layer and innervation, they are unable to

autoregulate. However, it should be noted that as malignant tumor tissue invades normal

tissue, it incorporates normal tissue blood vessels, mainly arterioles, which are fully capable

of responding to external stimuli. Therefore, the change in tumor blood flow by

hyperthermia may depend, in part, on the extent of incorporation of normal arterioles

in the tumor mass [15].

There have been numerous studies on the effects of hyperthermia on tumor blood flow

[1–9, 16]. Following is a brief summary of the effect of hyperthermia on tumor blood

flow, based mainly on work done in our own laboratory. When RIF-1 fibrosarcomas of

C3H mice were heated at 44.58C using a water bath for 1 h, blood flow began to decrease

within 15 min of heating and continued to decrease to about 30% of the original value by

the end of 1 h heating [17]. The tumor blood flow further decreased to undetectable

levels several hours after heating at 44.58C for 1 h. When RIF-1 tumors were heated at

43.58C for 1 h, the blood flow increased about two-fold by the end of heating, but it rapidly

decreased to negligible level thereafter. Upon heating at 41.58C or 42.58C for 1 h, the blood

flow in the RIF-1 tumors slightly increased during heating, decreased transiently after heat-

ing, and increased within a couple hours. The blood vessels in SCK breast tumors of A/J

mice were found to be more liable to heat-induced damage than RIF-1 blood flow since

the blood flow in SCK tumors began to decrease after only 30 min of heating at 43.58C
and blood flow significantly decreased by the end of 1 h heating at 42.58C [16, 18]. In a

third model, R3230 adenocarcinoma of Fischer rats, heating at 40.5–43.58C for 30 min sig-

nificantly increased tumor blood flow during heating [19, 20]. When tumors were heated for

1 h at 40.5 and 41.58C, blood flow increased and heating for 1 h at 42.5–43.58C decreased
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the tumor blood flow. An important and somewhat unexpected result in our laboratory

was that in the R3230 tumors heated at 40.5 or 41.58C for 30–60 min, the increase in

tumor blood flow 24 h after heating was markedly greater than that immediately after heat-

ing. For example, the blood flow in R3230 tumors increased about 1.5 times immediately

after heating while it increased 2.5 times 24 h after heating at 41.58C for 60 min. In

spontaneous canine tumors, blood flow 24 h after heating at <448C for 1 h was found to

be significantly increased while blood flow decreased after heating at T50 > 448C [21].

Hyperthermia-induced changes in tumor oxygenation by
mild temperature hyperthermia (MTH)

Since oxygenation status in tumors greatly affects the efficacy of radiotherapy and also

some chemotherapy drugs, the effect of hyperthermia on tumor oxygenation has received

considerable attention in recent years as reviewed in recent articles [22, 23]. It is not

surprising that while heating at temperatures high enough to reduce tumor blood flow

decreases tumor oxygenation, heating at mild temperatures, i.e., 39–428C, causes long-

lasting increase in tumor oxygenation [22–24]. For example, the median pO2 in FSaII

fibrosarcomas grown in C3H mice was 6.5� 0.5 mmHg before heating and it increased to

16.6� 1.1 mmHg and 10.9� 1.3 mmHg immediately and 24 h after heating at 41.58C for

60 min, respectively (see Figure 1) [25].

Similar heat-induced increases in pO2 were observed in SCK tumors of A/J mice [26, 27].

In the R3230 tumors of rats, pO2 also increased immediately and 24 h after heating

at 41.58C [19, 28]. Interestingly, in the R3230 tumors heated at 42.58C for 60 min, the

tumor pO2 immediately after heating was similar to that before heating but the pO2 at

24 h after heating was found to be markedly increased. The pO2 in all FSaII tumors,

Figure 1. Heat-induced changes in pO2 in FSaII fibrosarcoma of C3H mice, SCK mammary tumors
of A/J mice and R3230 adenocarcinomal of Fischer rats grown s.c. in the hind legs of animals.
The tumors were heated for 1 h using a water-bath at temperatures shown. The tumor pO2 of FSaII
tumors and SCK tumors were determined immediately after heating and that of R3230 tumors
were determined either immediately or 24 h after heating. The pO2 was measured using polarographic
microelectrode system (Eppendorf ). Each data point is the mean of more than 10 tumors. The bars
show one SE of the mean. [22, 24].
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SCK tumors and R3230 tumors decreased after heating at 43.58C for 60 min. However,

when R3230 tumors were heated only for 30 min, heating at 43.58C significantly increased

the pO2 both immediately and 24 h after heating. Taken together, it may be concluded that,

in rodent tumors, heating at mild temperature, i.e., 40–428C, for 30–60 min increases blood

flow and improves tumor oxygenation. Vujaskovic et al. [21] reported that the median pO2

in canine soft tissue sarcoma was 7.9 mmHg before hyperthermic treatment and it increased

to 22.6 mmHg at 24 h after the first hyperthermia treatment. Interestingly, heating the

canine tumors with T50 (50% of temperature determined) lower than 448C increased

pO2 in the canine tumors, while heating with T50 higher than 448C decreased tumor

pO2. As we would expect, heating the tumors at T50 higher than 448C likely caused vascular

damage and thus tumors became hypoxic. In a human soft tissue sarcoma study, the average

pO2 before treatment was 4 mmHg and it increased about three times 24 h after a first heat-

ing at median T90 of 39.98C (37.5–42.78C) [11]. As much as a five-fold increase in pO2 in

human breast tumors 24 h after first hyperthermia treatment at a mild temperature was

observed [29]. Jones et al. [14] recently reported the effect of hyperthermia on the response

of locally advanced breast cancer (LABC) in humans to chemoradiotherapy. The treatment

goal was to heat the tumors at 41–41.58C for 60 min in >90% of measured points. In this

study, eight of 13 tumors were hypoxic with average median pO2 of 4.7 mmHg before treat-

ment and the tumor pO2 increased to 23.3 mmHg at 24 h after the first hyperthermia treat-

ment. An important observation in this study was that heating at relatively mild

temperatures was superior to heating at higher temperatures in causing reoxygenation in

tumors and inducing complete tumor response to chemoradiotherapy. This result may be

interpreted to mean that the high temperature heating caused vascular damage and hypoxia

in the LABC tumors reducing the effectiveness of chemoradiotherapy.

Mechanisms of hyperthermia-induced increase in tumor oxygenation

As mentioned before, tumor vascular beds consist of newly-formed tumor blood vessels and

host normal tissue blood vessels. The host normal arterioles, which are incorporated in the

tumor tissue, would dilate upon heating at mild temperatures probably due to smooth

muscle relaxation via stimulation by nitric oxide synthesized by endothelial cells [22]. In this

event, blood will pour into the dilated arterioles in the tumor and then subsequently flood

the network of capillary-like tumor blood vessels with an increased intravascular pressure

and speed. Consequently, blood may even course through previously collapsed and non-

functional blood vessels, thereby reoxygenating hypoxic regions. However, it must be noted

that the tissue pO2 is dependent not only on oxygen supply but also on the rate of oxygen

consumption by the tissue. It is likely that while the increase in tumor pO2 observed during

and soon after MTH results from an increase in oxygen supply through the increase in blood

flow, late increases in tumor pO2, i.e., 24 h after heating, is caused by both increased blood

flow and decreased oxygen consumption due to some degree of heat-induced cell death or

cell damage [23, 29].

Radiosensitization of tumors by MTH alone or in combination with carbogen breathing

We have observed in numerous tumor models that the increase in tumor oxygenation by

MTH markedly enhanced the radiosensitivity of tumor cells as determined by in vivo-in vitro

excision assay for clonogenic cell survival and also by tumor growth delay study [24, 27,

30–32]. Figure 2 shows the results of in vivo-in vitro excision assay for clonogenic survival of

FSaII tumor cells after various treatments [22]. In FSaII tumors, irradiation immediately
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after and 24 h after MTH were equally effective in reducing cell survival. It was clear that the

MTH-induced increase in tumor oxygenation sensitized the tumors to irradiation even 24 h

after heating. Carbogen (mixture of 95% O2 and 5% CO2) breathing has been known to

increase oxygen content in blood and improves tumor oxygenation [33]. However, carbogen

breathing only slightly increased the radiosensitivity of FSaII tumors. In contrast, carbogen

breathing markedly increased the radiation-induced cell death when tumors were

pre-treated with MTH even up to 24 h before carbogen breathing and tumor irradiation.

It appeared that the increase in oxygen content in blood by carbogen breathing alone

is ineffective to reoxygenate the majority of hypoxic cells. The improved blood

perfusion throughout tumors by prior-heating at mild temperature apparently improved

the carbogen-induced reoxygenation of hypoxic cells.

Conclusion

Mild temperature hyperthermia (MTH) causes sustained improvement of blood circulation

and oxygenation in animal and human tumors. Recent clinical studies unequivocally

demonstrated a link beween MTH-induced improvement of oxygenation and increases in

the response of human tumors to radiotherapy or chemoradiotherapy. The radiosensitiza-

tion of tumors may be further increased by combining MTH and carbogen breathing.

The increase in tumor blood flow and vascular permeability caused by MTH may be

exploited to increase delivery of chemotherapy drugs and other treatment agents such as

drug-containing liposomes, immunotherapeutic agents and genetic constructs.
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