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Abstract
Molecular chaperones, which are mostly heat- or stress-induced proteins (HSPs), not only regulate
various cellular functions such as protein folding, refolding of partially denatured proteins, protein
transport across membranes, cytoskeletal organization, degradation of disabled proteins, and
apoptosis, but also act as cytoprotective factors against deleterious environmental stresses. Recent
studies indicated that moderate overexpression of molecular chaperones could confer cells and tissues
stress tolerance and provide beneficial effects on various pathological states associated with protein
misfolding and protein aggregation. Mild heat shock, transfection of HSP genes, and some chemical
compounds are the major means of overexpression of molecular chaperones. In this review, we
summarize recent studies of chemical compounds that could induce or enhance the expression of
molecular chaperones or HSPs.
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Introduction

It is generally accepted that heat shock proteins (HSPs) have basic and indispensable

functions in the life cycle of proteins as molecular chaperones [1], as well as play a role in

protecting cells from environmental deleterious stresses [2]. Molecular chaperones are also

able to inhibit the aggregation of partially denatured proteins and refold them as demonstrated

in in vitro and in vivo studies [3, 4]. Therefore, molecular chaperones are considered to be

endogenous cytoprotective factors, lifeguards or guardians of proteome [5, 6].

Many lines of study indicate that molecular chaperones provide the organism with

beneficial functions at both the cellular and tissue levels. For example, the induction of

molecular chaperones in animals by whole body hyperthermia or by gene transfer could

protect the brain and heart from tissue injury induced by ischemia [7, 8]. A moderate

over-expression of molecular chaperones resulted in extended life spans in the nematode

and fruit fly [9, 10]. Also, molecular chaperones could suppress the aggregate formation
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of mutant proteins that cause neurodegenerative diseases, such as spinocerebellar

ataxia 1 (SCA1) [11], spinal and bulbar muscular atrophy (SBMA) [12], familial amyo-

trophic lateral sclerosis (FALS) [13] and Huntington’s disease [14]. Although the substrates

of the molecular chaperones are usually normal or wild-type proteins, molecular chaperones

could also deal with mutant proteins in some cases; that is, they can help even mutant

proteins fold correctly and maintain normal function by inhibiting non-productive folding

pathways [15, 16]. It should be very useful and beneficial to find non-toxic chaperone

inducers for the prevention and treatment of various pathological states, such as stress

ulcers and ischemia-induced injuries, as well as diseases associated with protein misfolding

and protein aggregation. Here, current information on small molecules that could enhance

the expression of HSPs or molecular chaperones are summarized (see Table I). A chaperone

inducer is a compound that can activate heat shock transcription factors (HSFs) and induce

Table I. Summary of chaperone inducers and co-inducers.

Compounds Inducer or co-inducer

Concentrations

required for the

induction of HSPs Solvent* Reference

NSAIDs

Sodium salicylate Inducer and co-inducer 45–60 mM PBS Ishihara et al. 2003

Indomethacin Inducer and co-inducer 500–750 mM DMSO [21]

Aspirin Inducer and co-inducer 400mM PBS [20]

Hsp90 inhibitors

Geldanamycin Inducer 20–400 nM DMSO [26]

Radicicol Inducer 5 mM ethanol [24]

Herbimycin-A Inducer 1–2 mM DMSO [27]

Arachidonic acid Inducer and co-inducer 20mM Ethanol [28]

Prostaglandins (PGs)

PGA1 Inducer 10–20mM Ethanol [30]

PGJ2 Inducer 10–20mM Ethanol [29]

2-Cyclopentene-1-one Inducer 500–1000 mM DMSO [33]

Proteasome inhibitors

MG132 Inducer 10mM DMSO [34]

Lactacystin Inducer 10mM DMSO [34]

Serine protease inhibitors

DCIC Inducer 5–20mM DMSO [35]

TLCK Inducer 100–300 mM PBS [35]

TPCK Inducer 50–100mM Ethanol [35]

Anti-ulcer drugs

Geranylgeranylacetone (GGA) Inducer and co-inducer 1 mM Ethanol [36]

Rebamipide Inducer 100–500 mM DMSO [40]

Carbenoxolone Inducer 10–500mM PBS [41]

Polaprezinc (zinc L-carnosine) Inducer 10–200mM PBS [42]

Herbal medicines

Paeoniflorin Inducer and co-inducer 10–150mM PBS [51]

Glycyrrhizin Co-inducer 10–100mM PBS [51]

Celastrol Inducer and co-inducer 2–7 mM DMSO [50]

Dihydrocelastrol Inducer and co-inducer 8 mM DMSO [50]

Dihydrocelastrol diacetate Inducer and co-inducer 3 mM DMSO [50]

Bimoclomol (BRLP-42) Co-inducer 1–10mM PBS [43]

Curcumin Co-inducer 3–10mM DMSO [49]

*PBS: phosphate buffered saline (soluble in water); DMSO: dimethyl sulphoxide.
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HSPs by itself. HSF1 is the primary stress-inducible transcription factor that senses and

responds to a variety of physiological and environmental stress conditions. The process

of HSF1 activation involves multiple steps, including translocation into the nucleus,

oligomerization from monomer to trimer, acquisition of DNA-binding activity and

phosphorylation [17]. In contrast, a chaperone co-inducer is a substance that cannot

induce HSPs by itself, but can enhance HSP induction in combination with other mild

stresses. A chaperone co-inducer also has the ability to lower the temperature threshold

of the heat shock response.

Chaperone inducers and co-inducers

It is well known that various substances that perturb protein structure such as ethanol,

amino acid analogues and heavy metals induce HSPs or molecular chaperones. These

substances, however, cannot be used for medical applications because of their toxicity.

Non-steroidal anti-inflammatory drugs (NSAIDs)

Previously, non-steroidal anti-inflammatory drugs (NSAIDs), such as sodium salicylate

[18], indomethacin [19] and aspirin [20] have been shown to decrease the temperature

threshold of the heat shock response or induce HSPs through the activation of HSF1.

NSAIDs are considered to be very useful for protecting cells against diverse forms of stress,

because the same drug can inhibit inflammation and induce cytoprotective molecular

chaperones [17]. Pre-treatment with these NSAIDs confers cytoprotection [18] and

suppresses the protein aggregation and apoptosis caused by an expanded polyglutamine

tract [21]. The concentration of sodium salicylate required for the induction of HSPs,

however, appears to be too high for clinical application (45–60 mM) [17, 21].

Hsp90 inhibitors

According to the HSF1 cycle model, HSF1 is usually bound to a molecular chaperone

complex containing Hsp90, Hsp70, Hsp40 and other co-chaperones and exists in an

inactive state. Once cells are exposed to a stressful condition that perturbs the protein

structure and causes protein denaturation, molecular chaperones are released from HSF1

and recruited to the site of the denatured proteins, then HSF1 is activated [22].

Geldanamycin, radicicol and herbimycin A, which are known as Hsp90 inhibitors, are

able to activate the heat shock response and induce HSPs [23–25]. These compounds are

shown to bind to Hsp90 and disrupting the chaperone complex and, consequently, releasing

the inactive HSF1, which in turn leads to the activation of HSF1 and the expression of

HSPs. Treatment of mammalian cells with geldanamycin could inhibit the aggregation

of huntingtin exon 1 protein containing a polyglutamine tract in the pathological range

(51 glutamines) [26]. Radicicol, a macrocyclic anti-fungal antibiotic isolated from an herbal

remedy, and herbimycin A, a benzoquinoid ansamycin antibiotic that inactivates p-60v-src

tyrosine kinase, are also shown to induce HSPs and to confer cytoprotection in rat

cardiomyocytes [24, 27].

Arachidonic acid and prostaglandins

Cell and tissue injuries activate the inflammatory response through the actions of

arachidonic acid and its metabolites. Exposure to arachidonic acid resulted in the
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induction of heat shock gene transcription via acquisition of DNA binding activity and

phosphorylation of HSF1 [28]. Prostaglandins (PGs) are a class of naturally occurring cyclic

20-carbon fatty acids that are synthesized from polyunsaturated fatty acid pre-cursors.

The type A and J prostaglandins (PGA1, PGA2 and PGJ2), which are potent growth

inhibitors, could activate HSF1 and induce HSPs [29, 30]. Treatment with PGA1 or PGJ2

renders cells thermotolerant [31, 32]. Induction of HSPs by PGs requires the presence of a

reactive �, �-unsaturated carbonyl group in the cyclopentane ring (cyclopenteneone). This

cyclopentenone ring itself, 2-cyclopentene-1-one, is able to activate HSF1 and enhance the

expression of HSP genes [33].

Proteasome inhibitors and serine protease inhibitors

Proteasome inhibitors such as hemin, MG132 and lactacystin could activate HSF2 (not

HSF1) and augment the expression of the same set of HSPs as HSF1 [34]. Also, serine

protease inhibitors (TPCK, TLCK and DCIC) are capable of stimulating HSF1 activation

and enhancing the expression of HSPs [35]. These inhibitors of protein degradation might

cause the accumulation of mis-folded and disabled proteins or disturb intra-cellular protein

homeostasis, which in turn might elicit the stress response.

Anti-ulcer drugs

Geranylgeranylacetone (GGA), an acrylic isoprenoid, is clinically used as an anti-ulcer

drug and could induce HSPs through HSF1 activation in gastric mucosal cells [36].

Pre-treatment of animals with GGA markedly suppressed ischemia-reperfusion injury of

the liver, small intestine and heart [37]. When orally administered, GGA enhanced the

induction of HSPs in the rat liver in combination with heat shock and protected the

liver from injury caused by ischemia-reperfusion [38]. GGA itself, however, could not

induce HSPs in cultured rat hepatocytes [39]. Therefore, the positive effect of GGA on

the induction of HSPs might be cell-type specific. Thus, GGA might work as a

chaperone inducer or a co-inducer. Other anti-ulcer drugs such as rebamipide [40],

carbenoxolone [41] and polaprezinc (zinc L-carnosine) [42] have been shown to induce

HSPs, but these have not been extensively examined.

Others

Bimoclomol, a hydroxylamine derivative, is a co-inducer of HSPs. Bimoclomol itself has

no HSP-inducing activity, but when cells are heat shocked in the presence of

bimoclomol, HSPs are induced at higher levels than by heat shock alone [43].

Bimoclomol, however, has been shown to have protective activities against various forms

of stresses at the levels of cell, tissue or organism [44]. Bimoclomol is shown to bind directly

to HSF1 and induce a prolonged binding of HSF1 to HSE [45]. It has been reported in

experimental animal models that bimoclomol has potential therapeutic use in the treatment

of diabetic peripheral neuropathy [46], cardiac dysfunction [47] and cerebrovascular

disorders [48].

Curcumin, a major component of turmeric, a seasoning commonly used in Indian

food, is a potent stimulator of the heat shock response [49]. Curcumin itself could not

induce HSPs, but when cells were heated at a mild temperature in the presence of

curcumin, the expression level of HSPs was much higher than that induced by heat

shock alone. Thus, curcumin seems to be a chaperone co-inducer.
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Herbal medicines

Celastrol is a member of the triterpenoid compounds derived from the Celastraceae family

of plants. Extracts of these plants have been used in traditional Chinese medicine for

the treatment of fever, chills, inflammation and rheumatoid arthritis. Celastrol and its

derivatives (dihydrocelastrol and dihydrocelastrol diacetate) could activate HSF1 and

induce HSPs at micro-molar concentrations [50]. Also, a sub-optimal concentration

of celastrol and mild heat shock had a synergistic effect on the induction of HSPs.

Pre-treatment of cells with celastrol could render them stress-resistant. Therefore, celastrol

might be called both a chaperone inducer and a chaperone co-inducer.

Recently, it was found that paeoniflorin, one of the major constituents of a herbal

medicine derived from Paeonia lactiflora Pall, could induce HSPs by itself through the

activation of HSF1 [51]. Also, thermotolerance was induced by the treatment with

paeoniflorin. Paeoniflorin had no toxic effect at concentrations as high as 200 mM.

Another compound, glycyrrhizin, a main constituent of the hydrophilic fraction of licorice

(Glycyrrhiza glabra) extracts, had an enhancing effect on the HSP induction by heat

shock, but could not induce HSPs by itself. Thus, paeoniflorin might be termed a chaperone

inducer and glycyrrhizin a chaperone co-inducer. Peony extracts and their constituents,

such as paeoniflorin, have been shown to have various biological and bio-modulating

activities including improvement of memory, anti-oxidant activity, anti-epileptic activity,

anti-mutagenic properties and anti-hyperglycemia. Glycyrrhizin is also known to have

a wide range of pharmacological actions, such as anti-viral, anti-carcinogenic, anti-allergic

and anti-inflammatory activities. Although the molecular mechanisms of these pharmacolo-

gical functions of paeoniflorin and glycyrrhizin are not yet fully understood, these activities

might be ascribed in part to their positive effect on the induction of molecular chaperones.

A recent study, however, indicated that much higher concentrations of paeoniflorin

(0.5–1.0 mM) could induce apoptosis in some type of cells [52].

In the preliminary experiments, treatment of the nematode C. elegans with a combination

of heat shock and paeoniflorin resulted in a significant increase in their life span by as much

as 20–30%. Recent studies indicate that an anti-convulsant drug, named ethsuximide, could

extend the life span of C. elegans [53]. Therefore, non-toxic chaperone inducers might be

useful for the study of ageing and senescence. Also, the effect of paeoniflorin on tumour

cell growth was examined. When B16 melanoma cells were transplanted into C57BL

mice, most mice died within 30–40 days. In contrast, intra-peritoneal administration of

paeoniflorin every 2 days suppressed the growth of tumour cells and all mice were still

alive at 40 days after the transplantation of tumour cells (Figure 1).

Conclusions

Molecular chaperones have beneficial functions to inhibit protein denaturation, assist in

the refolding and degradation of denatured proteins and suppress the accumulation of

disabled proteins in the cell. Therefore, it is of value to search for non-toxic chaperone

inducers and co-inducers among natural compounds and herbal medicines for the

prevention and treatment of various pathological states including stress ulcers, ischemia-

induced injuries, neurodegenerative diseases, transplantation surgery, cancer and ageing.

Some chaperone inducers have already been examined for the prevention of protein

aggregation expanded polyglutamine tract in cell culture models [21, 26] and tested for

the protection against neurodegeneration in a hemi-Parkinsonian animal model [54].

Since most of the chaperone inducers and co-inducers summarized in this review have
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bioactive and biomodulating activities, clinical use of these compounds must proceed very

carefully with respect to possible side effects.
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