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ABSTRACT
Heat shock proteins (HSP) have been associated with a range of persistent inflammatory disorders; 
however, little research has been conducted on the involvement of HSP in the development of 
ankylosing spondylitis (AS). The research aims to identify a diagnostic signature based on HSP-related 
genes and determine the molecular subtypes of AS. We gathered the transcriptional data of patients 
with AS from the GSE73754 dataset and conducted a literature search for HSP-related genes (HRGs). The 
logistic regression model was utilized for the identification of hub HRGs associated with AS. Subsequently, 
these HRGs were employed in the construction of a nomogram prediction model. We employed a 
consensus clustering approach to identify novel molecular subgroups. Subsequently, we conducted 
functional analyses, encompassing GO, KEGG, and GSEA, to elucidate the underlying mechanisms 
between these subgroups. To assess the immunological landscape, we employed the xCell algorithm. 
Through logistic regression analysis, the four core HRGs (CCT2, HSPA6, DNAJB14, and DNAJC5) were 
confirmed as potential biomarkers for AS. Subsequent stratification revealed two distinct molecular 
phenotypes, designated as Cluster 1 and Cluster 2. Notably, Cluster 2 was characterized by the 
upregulation of pathways pertinent to immune response and inflammation. Our research suggests that 
the CCT2, HSPA6, DNAJB14, and DNAJC5 exhibit potential as effective blood-based diagnostic biomarkers 
for AS. These findings contribute to a deeper comprehension of the underlying mechanisms involved in 
the development of AS and offer potential targets for personalized therapeutic interventions.

Introduction

Ankylosing spondylitis (AS) is a chronic inflammatory rheu-
matic disease primarily affecting the axial skeleton, leading to 
pain and progressive spinal stiffness in affected individuals 
[1,2]. Progressive joint ankylosis can occur as a consequence 
of this, leading to a significant impact on the patient’s quality 
of life. An early diagnosis of ankylosing spondylitis is essen-
tial in order to alleviate the patient’s burden [3]. Despite 
advances in understanding the etiology of AS, the precise 
pathogenic mechanisms remain elusive. The role of genetic 
predisposition is well-established, with HLA-B27 positivity 
being a significant risk factor [4,5]. However, not all individu-
als with this genetic marker develop AS, indicating that other 
factors, including environmental triggers and additional 
genetic contributions, play crucial roles in disease develop-
ment [6,7].

Heat shock proteins (HSP) are highly conserved molecules 
that primarily function as molecular chaperones to assist in 
the proper folding of other proteins [8]. Emerging evidence 
implicates HSP in the pathogenesis of various autoimmune 
and inflammatory diseases due to their involvement in 

immune response modulation and antigen presentation 
[9,10]. In rheumatoid arthritis, it has been observed that HSP 
exhibit immunoregulatory properties owing to their immuno-
genic nature [11]. Notably, HSP27, 60, 70, and 90 have been 
implicated in this process [12]. Several investigations have 
provided evidence of their involvement in mitigating inflam-
mation. The ability of HSP to suppress arthritis can be 
attributed to their capacity to promote the release of the 
anti-inflammatory factor [13,14]. Their potential role in AS, 
however, has been relatively unexplored. Given the 
stress-induced nature of HSP expression and the 
stress-associated pathophysiology of inflammatory diseases, 
investigating the involvement of HSP-related genes (HRGs) in 
AS could provide novel insights into the disease’s 
pathogenesis.

Our study focuses on delineating the contribution of HRGs 
to AS development. By leveraging bioinformatics approaches 
and the extensive transcriptional data available from the 
GSE73754 dataset, we aimed to identify a set of HRGs that 
could serve as a diagnostic signature for AS. The application 
of logistic regression models facilitated the identification of 
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hub HRGs with a strong association with AS, offering poten-
tial as diagnostic biomarkers. Furthermore, the heterogeneity 
of AS suggests the existence of distinct molecular subtypes 
with unique pathogenic pathways and clinical outcomes. We 
applied consensus clustering to the identified HRGs to 
unravel these subtypes, hypothesizing that such classification 
could lead to personalized therapeutic strategies. Functional 
analyses, including Gene Ontology (GO) enrichment, Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Gene Set 
Enrichment Analysis (GSEA), provided the framework for 
understanding the biological differences between the molec-
ular subtypes identified. The immunological landscape of AS 
was also investigated using the xCell algorithm. Through this 
approach, we aimed to enrich our understanding of the 
immune cell interactions and pathways that underlie the 
identified molecular subtypes.

In summary, our research presents a comprehensive anal-
ysis of HRGs in the context of AS, offering new perspectives 
on its pathogenesis and highlighting potential blood-based 
biomarkers for diagnosis. The discovery of molecular sub-
types within AS patients provides a stepping stone toward 
personalized medicine, guiding future research toward tar-
geted therapeutic interventions that cater to the specific 
molecular characteristics of AS subgroups.

Methods

Dataset collection and data processing

The GSE73754 dataset, downloaded from the NCBI GEO pub-
lic database, consisted of a cohort of 20 individuals in the 
healthy control (HC) group and 52 individuals in the AS 
group. Prior to the analytical process, the raw matrix files 
underwent extraction and standardization utilizing the “affy” 
software package. Subsequently, the gene expression matrix 
was obtained from the probe expression matrix by employ-
ing the annotations from the GPL10558 microarray platform. 
In addition, we initially amassed a compilation of 97 genes 
associated with HSP from the relevant literature [15,16].

Differential expression analysis of HRGs

The differential expression analysis between the AS and HC 
groups was conducted using the limma package in R soft-
ware, with a significance threshold of p.adj < 0.05. The heat-
map and box plot visualizations of the HRGs associated with 
differential expression were generated using the pheatmap 
package and ggplot2 package. Furthermore, the significance 
of each gene’s importance was determined through Friends 
analysis performed using the R package GOSemSim.

Functional enrichment analysis

We utilized the clusterprofler package to conduct Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and Gene 
Ontology (GO) enrichment analyses for the identified HRGs 
or DEGs. This analysis allowed us to gain valuable insights 
into the functional annotations and pathways associated 
with these genes.

Construction and evaluation of the predictive 
nomogram

HRGs were further refined through a logistic regression anal-
ysis utilizing the rms package. In addition, the nomogram 
was constructed using the rms package. To assess the diag-
nostic efficacy of both the nomogram and the gene in pre-
dicting AS, a Receiver Operating Characteristic (ROC) curve 
was constructed.

Consensus cluster analysis

To thoroughly investigate the association between HSP and 
AS, we utilized the ConsensusClusterPlus tool to execute a 
cluster analysis on AS patients, focusing on their HRGs 
expression profiles. Classification was accomplished by uti-
lizing the most suitable “k” value obtained from the 
Cumulative Distribution Function (CDF) curve. Moreover, we 
conducted a comparative analysis of these subtypes by 
employing the limma package. Subsequently, the ggplot2 
and ComplexHeatmap packages were utilized to generate a 
visually volcano plot and heatmap, respectively.

Gene set enrichment analysis (GSEA)

To explore the molecular mechanism of AS subgroups, we 
utilized GSEA to compare differential signaling pathways 
between the two subgroups. To perform this analysis, we uti-
lized the clusterprofler package. To obtain the gene set infor-
mation, we downloaded the subset “h.all.v7.4.symbols.gmt” 
from the Molecular Signatures Database. A statistical signifi-
cance threshold of p < 0.05 was considered.

Immune microenvironment analysis

xCell was utilized in this study to quantify the infiltration 
level of immune cells based on gene expression profiles [17]. 
To evaluate the discrepancy in the proportion of infiltrating 
immune cells between the two subgroups, ComplexHeatmap 
and ggplot2 packages were employed to generate a visually 
heatmap and box plot. Additionally, the relationship between 
the expression of core HRGs and the infiltration of immune 
cells was investigated using the ggplot2 package.

Collection of clinical blood samples to validate core 
gene expression

A total of 14 individuals, including 7 healthy subjects and 7 
individuals diagnosed with AS, were recruited for blood sam-
ple collection at the First Affiliated Hospital of Heilongjiang 
University of Traditional Chinese Medicine. Informed consent 
was obtained from all participants prior to sample collection, 
ensuring compliance with ethical guidelines. Furthermore, 
the study procedures were approved by the Ethics Committee 
at the First Affiliated Hospital of Heilongjiang University of 
Traditional Chinese Medicine.

Blood samples were subjected to RNA extraction using 
TRIzol reagent (ThermoFisher, USA). To perform qRT-PCR anal-
ysis, the SYBR qPCR Master Mix (Bio-Rad) was utilized. The 
expression of the primary core HRGs was assessed using the 
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Roche LC480 Real-Time PCR System (Roche). β-actin was used 
as a reference gene for mRNA normalization. Therelative 
mRNA expression levels were quantified using the 2–

ΔΔCt method.

Results

Identification of HRGs in as

A total of 11 HRGs were identified. To elucidate the interrela-
tionship among these 11 HRGs, a correlation analysis was 
conducted (Figure 1A). The findings demonstrated a strong 
synergistic effect between CCT2 and HSPE1 (R = 0.71), while 
DNAJC8 and HSPA6 exhibited a clear antagonistic action 
(R = −0.71). The Friends analysis revealed a descending 
arrangement of genes based on their mean similarity values 
with other genes. The gene at the topmost position, HSPA6, 
exhibited the highest level of similarity with other genes, 
thus indicating its significance as a key gene (Figure 1B). 
Furthermore, the expression levels of HSPA6, DNAJB14, 
DNAJC5, and DNAJC30 were found to be significantly ele-
vated in AS blood samples compared to HC blood samples, 
while the expression levels of DNAJC8, CCT2, DNAJB6, HSPA5, 

HSPE1, DNAJC9, and CCT3 were significantly reduced in AS 
blood samples compared to HC blood samples (Figures 1C–D).

Enrichment analysis of HRGs

The molecular biological functions of HRGs in AS were deter-
mined using GO terms and KEGG pathways (Figures 2A–B). In 
the biological process (BP) category, enrichment was observed 
in chaperone-mediated protein folding and protein folding. 
The cellular component (CC) category showed enrichment in 
the chaperone complex and chaperonin-containing T-complex. 
In the molecular function (MF) category, enrichment was 
observed in heat shock protein binding and unfolded protein 
binding. KEGG pathway analysis revealed significant enrich-
ment in pathways such as protein processing in endoplasmic 
reticulum, prion disease, and lipid and atherosclerosis.

Construction and evaluation of the nomogram

By conducting logistic regression analysis on the 11 HRGs, 
we identified four key genes, namely CCT2, HSPA6, DNAJB14, 
and DNAJC5, with p values < 0.05. These findings indicate 

Figure 1.  Identification of HRGs in AS. (A) The correlation heatmap of HRGs. Significant positive correlations are indicated by red circles, while significant negative 
correlations are marked by green circles. The size of the circle and the numeric value within correspond to the strength of the correlation coefficient, with statis-
tical significance annotated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001). (B) Friends analysis of HRGs. To demonstrate the differential expression 
of HRGs between the HC and AS groups, we utilized a heatmap (C) and box plots (D). (**p < 0.01, ***p < 0.001).
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that these genes possess the potential to serve as biomarkers 
for patients with AS (Table 1). In order to enhance the accu-
racy of predicting the progression of AS, we have constructed 
a nomogram that integrates four signature genes (CCT2, 
HSPA6, DNAJB14, and DNAJC5) (Figure 3A). The evaluation of 
this nomogram using ROC curve analysis yielded an impres-
sive AUC value of 0.87, indicating a good predictive capacity 
(Figure 3B). The AUC values obtained for the signature genes 
were the following: CCT2-AUC: 0.809, HSPA6-AUC: 0.788, 
DNAJB14-AUC: 0.81, and DNAJC5-AUC: 0.718 (Figure 3C). 
These promising AUC values indicate the good predictive 
capabilities of the four candidate biomarkers for AS.

Furthermore, we conducted an analysis of marker gene 
expression levels in the GSE73754 dataset. As depicted in 
Figure 4A, the AS group exhibited decreased expression of 
CCT2 in comparison to the HC group, whereas the AR group 
demonstrated increased expression of HSPA6, DNAJB14, and 
DNAJC5 (p < 0.01 or p < 0.001). These findings were further 
corroborated in the clinical blood samples collected 
(Figure 4B).

Clustering analysis and differential gene expression 
profiling of as samples

As shown in Figure 5A, a heatmap generated from a hierar-
chical clustering analysis of HRGs expression data, revealing 
two main clusters of AS samples, Cluster 1 and Cluster 2.  

As shown in Figure 5B, a volcano plot that highlights the dif-
ferential expression between Cluster 1 and Cluster 2. 958 
genes that are upregulated in Cluster 1 relative to Cluster 2 
are shown in red, whereas 887 genes downregulated are in 
blue. Genes not exhibiting statistically significant changes are 
colored grey. Figure 5C presents an additional heatmap 
focused on the most significantly differentially expressed 
genes between the two clusters. Overall, this analysis sum-
marizes the clustering of AS samples based on HRGs expres-
sion profiles and identifies key genes with significant 
differential expression that may be critical for understanding 
the biological differences between the clusters.

Functional and pathway enrichment analysis of 
differentially expressed genes in different clusters of as

The molecular biological functions of differentially expressed 
genes in different clusters of AS were determined using GO 
terms and KEGG pathways. As shown in Figure 6A, key 
enriched terms include ribosome biogenesis, ribonucleopro-
tein complex biogenesis, and rRNA processing for BP; ribo-
somal subunit and ficolin-1-rich granule for CC; and structural 
constituent of ribosome, ribonucleoprotein complex binding, 
and rRNA binding for MF. KEGG pathway analysis revealed 
significant enrichment in pathways such as osteoclast differ-
entiation, autophagy, natural killer cell mediated cytotoxicity, 
necroptosis, TNF signaling pathway, etc (Figure 6B). 

Figure 2. E nrichment analysis of HRGs. (A) GO term enrichment for BP, CC, and MF categories. Enrichment significance is represented as -Log10(P.adj), where P.adj 
denotes the adjusted p-value for multiple testing corrections. (B) KEGG pathway enrichment analysis. The size of each bubble indicates the count of genes asso-
ciated with the pathway, while the color corresponds to the p-value. The x-axis, labeled as GeneRatio, represents the ratio of the number of differentially expressed 
genes involved in a given pathway to the total number of genes that make up that pathway.

Table 1. T he results of logistic regression analysis.

Characteristics Total (N)

Univariate analysis Multivariate analysis

Odds Ratio (95% CI) p value Odds Ratio (95% CI) p value

CCT2 72 0.003 (0.000 − 0.082) <0.001 0.132 (0.001 − 12.655) 0.384
HSPA6 72 16.395 (3.006 − 89.407) 0.001 5.396 (0.626 − 46.483) 0.125
DNAJB14 72 1312.394 (18.474 − 93232.2041) <0.001 455.032 (3.837 − 53964.8391) 0.012
DNAJC5 72 4908.927 (14.346 − 1679719.0099) 0.004 48.519 (0.052 − 45456.0683) 0.266
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Furthermore, the GSEA analysis findings indicated significant 
disparities in signaling pathways, specifically IL6 JAK STAT3 
signaling, inflammatory response, TNFA signaling via NFKB, 

PI3K AKT MTOR signaling, apoptosis, and hypoxia (Figure 6C). 
These findings provide a deeper understanding of the bio-
logical processes differentiating the AS clusters.

Figure 3. E valuation of predictive biomarkers and model performance for AS risk assessment. (A) Nomogram for predicting the probability of disease risk based 
on the expression levels of four biomarkers: CCT2, HSPA6, DNAJB14, and DNAJC5. (B) ROC curve for the predictive model. (C) ROC curves for individual biomarkers 
CCT2, HSPA6, DNAJB14, and DNAJC5.

Figure 4.  Differential expression of candidate genes between HC and AS. Boxplot representation of gene expression levels for CCT2, HSPA6, DNAJB14, and 
DNAJC5 in GSE73754 dataset (A) and clinical samples (B), comparing HC and AS (**p < 0.01, ***p < 0.001).
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Immune infiltration analysis

To further explore the immune profiles in different subgroups 
of AS, we employed the xCell algorithm to calculate the pro-
portions of distinct immune cell subsets in AS. Figure 7A dis-
plays a heatmap with hierarchical clustering representing the 
relative abundance of various immune cell types across two 
distinct groups, Cluster 1 and Cluster 2. Moreover, the Cluster 
2 group demonstrated significantly elevated levels of neutro-
phils and NKT cells in comparison to the Cluster 1 group. 
Conversely, the Cluster 2 group exhibited diminished levels 
of B cells, CD4+ memory T cells, CD4+ naive T cells, CD4+ T 
cells, CD4+ Tcm cells, CD8+ T cells, CD8+ Tcm cells, NK cells, 
and Th1 cells (Figure 7B). The results provide insights into the 
immune landscape of the two HSP-related clusters, highlight-
ing specific differences in immune cell composition that may 
be relevant for understanding the immune responses or 
pathological states associated with AS.

In addition, the Figure 8 displays a correlation matrix 
showing the relationship between the expression levels of 
specific genes (CCT2, HSPA6, DNAJB14, and DNAJC5) and var-
ious immune cell types’ abundance. For example, HSPA6 and 
DNAJC5 expression shows a significant positive correlation 
with the abundance of neutrophils, as indicated by the large 

red circle with four asterisks. In contrast, CCT2 shows a signif-
icant negative correlation with the abundance of neutrophils 
and NKT, as indicated by the large green circle with four 
asterisks.

Discussion

AS is a chronic inflammatory disorder characterized by 
inflammation of the axial skeleton, leading to progressive 
fusion of the spine [18]. In recent years, there has been grow-
ing interest in the role of HSP in chronic and aging inflam-
matory diseases [19]. However, there is limited research 
investigating the involvement of HSP in the pathogenesis of 
AS. In this study, we aimed to identify a diagnostic signature 
based on HSP-related genes (HRGs) and determine the 
molecular subtypes of AS, providing new insights into the 
underlying mechanisms of the disease.

Through the analysis of transcriptional data from AS 
patients using the GSE73754 dataset, we identified four core 
HRGs (CCT2, HSPA6, DNAJB14, and DNAJC5) that were signifi-
cantly associated with AS. These HRGs have shown potential 
as effective blood-based diagnostic biomarkers for AS. CCT2, 
functioning as a specialized autophagy receptor for 

Figure 5.  Clustering analysis and differential gene expression profiling of AS samples. (A) Heatmap with hierarchical clustering based on gene expression data of 
HRGs, illustrating two distinct clusters (Cluster 1 and Cluster 2) of AS samples. (B) Volcano plot depicting the differential expression between Cluster 1 and Cluster 2. 
(C) Heatmap of the top 50 differentially expressed genes between the two clusters, arranged by hierarchical clustering.
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aggregated proteins, may represent a critical therapeutic tar-
get in the amelioration of pathologies associated with pro-
teostasis dysfunction [20]. CCT2 may be regarded as an 
independent prognostic biomarker across a spectrum of neo-
plasms, wherein the expression profile of CCT2 varies consid-
erably among different tumor types and is indicative of 
divergent prognostic implications [21]. HSPA6, a member of 
the HSP70 chaperone family, exhibits partial evolutionary 
conservation across mammalian species. Recent research has 
elucidated that HSPA6 is implicated not only in oncogenesis 
and the progression of neoplastic conditions but also in the 
pathogenesis of various non-neoplastic disorders [22]. HSPA6 
enhances the growth of gastric cancer through the Hippo 
signaling pathway, serving as a new predictive marker for 
prognosis and a possible target for treatment [23]. DNAJB14 
is a constituent of the type II transmembrane Hsp40 protein 
family, exerting a pivotal role in modulating the activity of 

Hsp70 ATPase on the intracellular side of the endoplasmic 
reticulum membrane [24]. DNAJC5 plays a critical role in 
maintaining the proper functioning of nerve tissues. When 
DNAJC5 is mutated or removed in organisms such as mice, 
drosophila, and worms, it results in impaired synaptic activity, 
degenerative changes in the nervous system, and a decrease 
in lifespan [25,26]. Furthermore, there is a strong correlation 
between DNAJC5 mutations and the development of various 
human diseases [27,28]. Our findings suggest that these 
HRGs may play a crucial role in the development and pro-
gression of AS.

AS is a type of rheumatic disease characterized by 
immune-mediated inflammation [29]. AS disease activity can 
be effectively monitored by the systemic immune-inflammation 
index, which has shown a significant increase in AS patients 
[30]. Further functional analysis revealed that Cluster 2, one 
of the identified molecular subtypes, exhibited upregulation 

Figure 6. F unctional and pathway enrichment analysis of differentially expressed genes in different clusters of AS. (A) GO term enrichment for BP, CC, and MF 
categories. (B) KEGG pathway enrichment analysis. (C) GSEA results visualized as enrichment plots for selected pathways.
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of pathways related to immune response and inflammation. 
This finding indicates that Cluster 2 may represent a more 
inflammatory subtype of AS, potentially providing insight 
into the pathogenesis of the AS. The identification of these 
molecular subtypes in AS may have important clinical 

implications. By stratifying AS patients into different sub-
groups based on their molecular profiles, it may be possible 
to develop personalized therapeutic interventions. For exam-
ple, patients in Cluster 2, characterized by heightened 
immune response and inflammation, may benefit from 

Figure 7. T he immunological landscape of HSP-related clusters. (A) The distribution of immune cell subpopulations between Cluster 1 and Cluster 2 groups is 
presented in the heat map. (B) The levels of immune cell subpopulations between Cluster 1 and Cluster 2 groups are displayed in the box plot. *p < 0.05, 
**p < 0.01, ***p < 0.001.
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targeted anti-inflammatory therapies. On the other hand, 
patients in Cluster 1, which displayed a distinct molecular 
phenotype, may require different treatment approaches. This 
personalized approach could lead to improved outcomes and 
better management of AS patients.

AS is a chronic inflammatory autoimmune disease that 
affects the spine and other joints [31]. In contrast to other 
systemic autoimmune disorders, AS displays a prominent 
involvement of the innate immune system. This is evident 
through the abnormal functioning of various innate and 
innate-like immune cells, including mucosal-associated invari-
ant T cells, neutrophils, T cells, and mast cells, within the sus-
ceptible areas associated with the disease [2]. The mutual 
interaction between CD4 + T cells and human leukocyte anti-
gen B27 results in a series of cytokines and chemokines, trig-
gering inflammatory reactions and causing erosion of the 
bones in AS [32]. According to a recent research, individuals 
in the active stage of AS exhibit an immune system imbal-
ance in terms of frequency, encompassing a variety of 
immune cell types such as B cells, CD4 + T cells, Tregs, CD8 + T 
cells, and Th cells [33]. In the present study, we employed the 
xCell algorithm to evaluate the immunological landscape 
associated with AS. The Cluster 2 group demonstrated signifi-
cantly elevated levels of neutrophils and NKT cells in compar-
ison to the Cluster 1 group. Conversely, the Cluster 2 group 
exhibited diminished levels of B cells, CD4+ memory T cells, 
CD4+ naive T cells, CD4+ T cells, CD4+ Tcm cells, CD8+ T 
cells, CD8+ Tcm cells, and Th1 cells. This analysis provided 

further insights into the immune cell composition and func-
tional differences between the identified molecular subtypes. 
Understanding the immunological landscape of AS can aid in 
the development of novel therapeutic strategies and the 
identification of potential targets for intervention.

Conclusions

In conclusion, our study identified four core HSP-related 
genes (CCT2, HSPA6, DNAJB14, and DNAJC5) as potential 
blood-based diagnostic biomarkers for AS. These genes can 
be used in a nomogram prediction model for improved diag-
nosis. We also discovered two distinct molecular subgroups 
in AS, with Cluster 2 showing upregulation of immune 
response and inflammation pathways. Our findings provide 
valuable insights into the development of AS and offer 
potential targets for personalized therapeutic interventions.
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