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ABSTRACT
Objective:  The prevalence of asthma has gradually increased worldwide in recent years, 
which has made asthma a global public health problem. However, due to its complexity and 
heterogeneity, there are a few academic debates on the pathogenic mechanism of asthma. 
The study of the pathogenesis of asthma through metabolomics has become a new research 
direction. We aim to uncover the metabolic pathway of children with asthma.
Methods:  Liquid chromatography (LC)–mass spectrometry (MS)–based metabolomic analysis 
was conducted to compare urine metabolic profiles between asthmatic children (n = 30) and 
healthy controls (n = 10).
Results: Orthogonal projections to latent structures-discrimination analysis (OPLS-DA) showed 
that there were significant differences in metabolism between the asthma group and the 
control group with three different metabolites screened out, including traumatic acid, 
dodecanedioic acid, and glucobrassicin, and the levels of traumatic acid and dodecanedioic 
acid in the urine samples of asthmatic children were lower than those of healthy controls 
therein. Pathway enrichment analysis of differentially abundant metabolites suggested that 
α-linolenic acid metabolism was an asthma-related pathway.
Conclusions:  This study suggests that there are significant metabolic differences in the urine 
of asthmatic children and healthy controls, and α-linolenic acid metabolic pathways may be 
involved in the pathogenesis of asthma.

Introduction 

Asthma is a complex heterogeneous disease and is 
the most common chronic disease in childhood (1–3). 
With the progress of urbanization and industrializa-
tion over the years, the prevalence of asthma has 
increased year by year, affecting approximately 14% 
of children worldwide and 8.6% of children in the 
United States, which has now made asthma a global 
public health problem (4,5). At the same time, accord-
ing to the results of an epidemiological survey about 
pediatric asthma in China, the 2-year prevalence rate 
of asthma in children aged 0–14 years increased from 
0.91% in 1990 to 1.54% in 2000 to 2.32% in 2010, 
and the total prevalence rate increased from 1.09% 
in 1990 to 1.97% in 2000 to 3.02% in 2010 (6,7), 
which means that the number of children with asthma 

in China is constantly increasing. The rising preva-
lence aggravates the burden on individuals, families, 
and society, especially in low- and middle-income 
countries, making the prevention and treatment of 
asthma an urgent public health issue (8).

Asthma is a heterogeneous disease with a wide 
range of variability at the genetic level and is subject 
to gene–environment interactions that allow different 
patients to differ in disease severity, natural disease 
course, and response to available treatments (9). 
Because of the difficulty of early diagnosis and defin-
itive treatment in asthma, we can elucidate the patho-
logical mechanism of asthma at the molecular level 
by identifying potential diagnostic biomarkers/thera-
peutic targets to achieve early diagnosis and early 
treatment (10). Metabolomics relies on advanced 
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analytical chemistry technology and complex statistical 
methods to systematically analyze the dynamic changes 
in biological specimens (such as biological fluids, cells, 
and tissues), comprehensively evaluate the impact of 
small molecule metabolites due to disease progression 
or environmental changes, and then explore the fea-
sibility of its application in pathogenesis research and 
clinical diagnosis (11,12). In recent years, metabolo-
mics which aims at identification and quantitation of 
small molecules involved in metabolic reactions, pro-
vides a comprehensive assessment of biological pro-
cesses in the development of childhood asthma. A 
multicenter prospective cohort study showed that the 
metabotype of infants with severe bronchiolitis char-
acterized by high abundance of inflammatory amino 
acids and low abundance of polyunsaturated fatty 
acids had the highest risk for developing asthma (13). 
One study showed that potential protective prenatal 
nutrients (vitamin D, n-3 polyunsaturated fatty acids) 
may alter risk of asthma and allergic disease into 
adolescence (14). Based on the existing research 
results, we hypothesize that fatty acid metabolism 
plays an important role in the development of child-
hood asthma. Because of its noninvasive and conve-
nient sampling method, urine is a widely used body 
fluid in metabolomic studies (15). For example, Saude 
et  al.’s study provided evidence that urine metabolo-
mics could be used to distinguish between healthy 
controls, stable asthma patients, and patients with 
asthma exacerbations (16). Taking into consideration 
all these issues, our study further systematically stud-
ied the metabolic mechanism of children with asthma 
by liquid chromatography (LC)–mass spectrometry 
(MS)-based untargeted metabolomics analysis, which 
is popular in metabolomic studies due to its high 
throughput, soft ionization, and good coverage of 
metabolites, on urine samples of children with mild 
to moderate asthma in China and healthy controls. 
The findings of our study on metabolic pathways in 
children with asthma may provide new therapeutic 
target for childhood asthma.

Methods

Study population

Thirty children with mild to moderate asthma and 10 
healthy controls aged 5–10 years were enrolled from 
Deqing People’s Hospital between August 2022 and 
January 2023. The clinical manifestations of children 
with asthma met the following diagnostic criteria: (1) 
four or more cumulative episodes of recurrent cough-
ing, wheezing, shortness of breath, and chest tightness; 

(2) wheezing sounds or prolonged exhalation in the 
lungs could be examined during the attacks; (3) previ-
ous lung function indicated a decrease in forced expi-
ratory volume in the first second (FEV1), and the 
diastolic test was positive; (4) the symptoms of wheez-
ing improved after controlled treatment. All asthmatic 
children were in stable condition by using inhaled cor-
ticosteroids as a maintenance medication. The control 
group consisted of healthy children without wheezing, 
and those with a history of related respiratory diseases 
were excluded. All participants were free of respiratory 
infections and had no special dietary arrangements 
before sampling. At recruitment, children underwent 
routine blood tests, lung function assessments, and total 
immunoglobulin E (IgE) measurements, and their 
demographic and atopic index data were collected. The 
Ethics Committee of Deqing People’s Hospital approved 
this study (LL2021-K21). All parents signed written 
informed consent before sample and data collection. 
All methods were carried out in accordance with the 
principles of the Helsinki Declaration.

Urine sample collection and preparation

One milliliter of early morning midstream urine spec-
imens was dispensed into centrifuge tubes, 10 µL of 
sodium azide working solution (0.5 mg/L) was added 
to inhibit bacteria, and the samples were stored at 
−80 °C until analysis. After being thawed at room tem-
perature, 100 µL of sample was transferred to an 
Eppendorf tube. After the addition of 400 µL of extract 
solution (methanol:acetonitrile = 1:1, containing isoto-
pically labeled internal standard mixture), the samples 
were vortexed for 30 s, sonicated for 10 min in an 
ice-water bath, and incubated for 1 h at −40 °C to pre-
cipitate proteins. Then, the sample was centrifuged at 
12,000 rpm (relative centrifugal force [RCF] = 13,800 
(×g), R = 8.6 cm) for 15 min at 4 °C. The resulting super-
natant was transferred to a fresh glass vial for analysis. 
The quality control (QC) sample was prepared by mix-
ing an equal aliquot of the supernatants from all of 
the samples and was used to monitor the repeatability, 
stability, and reliability of the analytical methods.

LC–MS analysis

LC–MS/MS analyses were performed using an 
ultra-high performance liquid chromatography 
(UHPLC) system (Vanquish, Thermo Fisher Scientific) 
with a UPLC BEH Amide column (2.1 mm × 100 mm, 
1.7 µm) coupled to a Q Exactive HF-X mass spectrom-
eter (Orbitrap MS, Thermo Fisher Scientific) (17). The 



Journal of Asthma 3

mobile phase consisted of 25 mmol/L ammonium ace-
tate and 25 mmol/L ammonia hydroxide in water (pH 
= 9.75) (A) and acetonitrile (B). The autosampler tem-
perature was 4 °C, and the injection volume was 2 µL. 
The Q Exactive HF-X mass spectrometer was used for 
its ability to acquire MS/MS spectra in 
information-dependent acquisition mode in the control 
of the acquisition software (Xcalibur, Thermo Fisher 
Scientific). In this mode, the acquisition software con-
tinuously evaluates the full scan MS spectrum. The 
electron spray ionization source conditions were set 
as follows: sheath gas flow rate of 30 Arb, aux gas 
flow rate of 25 Arb, capillary temperature of 350 °C, 
full MS resolution of 120,000, MS/MS resolution of 
7500, collision energy of 10/30/60 in NCE mode, and 
spray voltage of 3.6 kV (positive) or −3.2 kV (negative).

Data processing

The raw data were converted to the mzXML format 
using ProteoWizard and processed with an in-house 
program, which was developed using R and based on 
XCMS, for peak detection, extraction, alignment, and 
integration (18). Then, an in-house MS2 database 
(BiotreeDB) was applied for metabolite annotation. 
The cutoff for annotation was set at 0.3.

After the relative standard deviation of the detected 
peaks was denoised, the missing values were filled up 
by half of the minimum value, and the internal stan-
dard normalization method was employed in this data 
analysis. The final dataset containing the information 
of peak number, sample name, and normalized peak 
area was imported to the SIMCA16.0.2 software pack-
age (Sartorius Stedim Data Analytics AB, Umea, 
Sweden) for multivariate analysis. Data were scaled 
and logarithmic transformed to minimize the impact 
of both noise and high variance of the variables. After 
these transformations, principal component analysis 
(PCA), an unsupervised analysis that reduces the 
dimension of the data, was carried out to visualize 
the distribution and grouping of the samples. 95% 
confidence interval in the PCA score plot was used 
as the threshold to identify potential outliers in the 
dataset. To visualize group separation and find sig-
nificantly changed metabolites, supervised orthogonal 
projections to latent structures-discrimination analysis 
(OPLS-DA) were applied. Then, a 7-fold cross-validation 
was performed to calculate the value of R2 and Q2. 
R2 indicates how well the variation of a variable is 
explained and Q2 means how well a variable could 
be predicted. To check the robustness and predictive 
ability of the OPLS-DA model, a 200-times permuta-
tion was further conducted. Afterward, the R2 and Q2 

intercept values were obtained. Here, the intercept 
value of Q2 represents the robustness of the model, 
the risk of overfitting, and the reliability of the model, 
which will be the smaller the better. Furthermore, the 
value of variable importance in the projection (VIP) 
of the first principal component in OPLS-DA analysis 
was obtained (19). It summarizes the contribution of 
each variable to the model (20). The metabolites with 
VIP > 1 and p < 0.05 (Student’s t-test) were considered 
significantly changed metabolites. The results of the 
differentially abundant metabolites are visualized in 
the form of a volcano plot and were analyzed by 
correlation analysis to further understand the mutual 
regulatory relationship between metabolites in the 
process of biological state change. A receiver operating 
characteristic (ROC) curve was plotted for each 
well-defined differentially abundant metabolite, and 
the area under the curve (AUC) was calculated to 
judge the diagnostic efficiency of the metabolite.

In addition, the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Pathway database (http://www.
genome.jp/kegg/) was used for pathway enrichment 
analysis (21,22), and the corresponding differential 
abundance scores were determined.

Statistical analysis

The baseline characteristics of the study subjects were 
statistically analyzed using SPSS 25.0, with a difference 
of p < 0.05 being statistically significant. Binary cate-
gorical variables are represented as numbers (percent-
ages) and were analyzed with chi-square tests. 
Continuous variables normally distributed are repre-
sented as the mean ± standard deviation and were 
analyzed with Student’s t-tests. Continuous variables 
that did not obey the normal distribution are repre-
sented as median (lower quartile, upper quartile) and 
were analyzed with Wilcoxon Mann–Whitney U tests.

Results

Baseline characteristics

A total of 40 children participated in this study: 30 
asthmatic patients and 10 healthy controls. A com-
parison of the baseline characteristics of asthmatic 
and healthy subjects is presented in Table 1. There 
were no differences in age, sex, height, weight, BMI, 
white blood cell counts, percentage and count of neu-
trophils and eosinophils, IgE levels, or allergens (cat 
hair, dog hair) between children with asthma and 
healthy controls. There were significant differences in 
allergen of dust mites and lung function indicators 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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such as FEV1, forced vital capacity (FVC), FEV1/FVC, 
peak expiratory flow (PEF), and forced expiratory 
flow (FEF)25–75 between the two groups.

Metabolic profiling

From five QC samples and 40 experimental samples in 
this study, 9389 peaks were detected (Dataset S1), and 
472 metabolites were retained after filtering of deviation 
and missing values (Dataset S2), filling of missing values, 
and data normalization. The dimensionality of the data 
was reduced by PCA, which effectively highlighted the 
overall distribution trend of the metabolomics data and 
the degree of differences between the samples. It can 
be seen from the dispersion point plot obtained by PCA 
(Figure 1 and Figure S1) that the samples are basically 
in the 95% confidence interval. However, due to the 
high dimensionality and small sample size of the metab-
olomic data, the differences between the groups were 
affected by confounding factors other than the grouping 
variables, and the overall metabolic level difference 
between the asthma group and the healthy control 
group, as shown in the PCA scatter plot, was not sig-
nificant. Subsequently, through OPLS-DA, the irrelevant 
variables in metabolites were filtered out to obtain more 
reliable information about the intergroup differences in 
metabolites and the degree of correlation of the exper-
imental group. The scatter plot of the OPLS-DA model 

(Figure 2a) shows that the difference between the two 
groups of samples is large and that the repeatability is 
good. Through the replacement test, the corresponding 
OPLS-DA model was established 200 times to obtain 
the R2 and Q2 values of the random model, which were 
higher than their original values (R2

x = 0.416; R2
y = 

0.694; Q2 = 0.272, p < 0.05; Figure 2b), indicating that 
the OPLS-DA model has good predictive ability.

Potential metabolite-biomarker identification

According to VIPs > 1 and p < 0.05 of the OPLS-DA 
models, three metabolites associated with asthma 

Table 1.  Baseline characteristics of the 40 children.
Asthma (n = 30) Controls (n = 10) 95% CI p Value

Age (years) 6.40 (5.98, 8.20) 6.90 (5.75, 8.13) (−1.00, 1.00) 0.814
Sex
 M ale (n, %) 15 (50.0) 6 (60.0) (0.16, 2.85) 0.855
 F emale (n, %) 15 (50.0) 4 (40.0)
Height (cm) 120.30 (116.65, 130.85) 123.90 (115.25, 131.08) (−7.00, 7.30) 0.975
Weight (kg) 21.85 (19.98, 24.40) 23.00 (19.40, 26.58) (−3.40, 2.20) 0.574
BMI (kg/m2) 14.85 ± 1.40 15.25 ± 1.24 (−1.4, 0.61) 0.432
Blood routine examinations
  WBC count (×109/L) 6.85 (6.08, 8.20) 6.80 (5.25, 7.73) (−0.70, 1.50) 0.522
 N  (%) 61.16 ± 4.46 61.59 ± 5.20 (−3.86, 3.01) 0.803
 N C 4.44 (3.67, 4.76) 3.89 (3.25, 4.80) (−0.42, 1.06) 0.333
  E (%) 4.40 (3.60, 5.80) 4.45 (3.50, 5.28) (−0.80, 1.60) 0.731
  EC 0.31 (0.26, 0.40) 0.25 (0.20, 0.38) (−0.03, 0.14) 0.142
  IgE (IU/mL) 173.50 (83.00, 279.75) 87.25 (60.95, 175.75) (−21.0, 153.00) 0.174
Allergen
  Dust mites (n, %) 29 (96.7) 1 (10.0) (14.79, 4607.52) <0.001
  Cat hair (n, %) 1 (3.3) 0 (0.00) – 1.000
  Dog hair (n, %) 2 (6.7) 0 (0.00) – 1.000
Lung-function tests
 F EV1 (%) 74.00 (68.00, 78.00) 87.50 (79.00, 98.50) (−24.00, −9.00) <0.001
 F VC (%) 91.43 ± 9.32 102.40 ± 12.27 (−18.43, −3.50) 0.005
 F EV1/FVC (%) 0.79 (0.76, 0.83) 0.87 (0.85, 0.89) (−0.11, −0.04) <0.001
  PEF (%) 83.27 ± 8.45 101.80 ± 11.88 (−25.47, −11.60) <0.001
 F EF25 (%) 81.33 ± 7.25 100.60 ± 11.30 (−25.46, −13.07) <0.001
 F EF50 (%) 75.50 (64.00, 80.00) 85.50 (72.00, 93.25) (−22.00, −4.00) 0.006
 F EF75 (%) 60.27 ± 6.51 78.30 ± 11.90 (−26.73, −9.33) 0.001

Data are presented as numbers (percentages), mean ± standard deviation or median (lower quartile, upper quartile) as required.
CI: confidence interval; BMI: body mass index; WBC: white blood cell; N: neutrophil; NC: neutrophil count; E: eosinophil; EC: eosinophil 

count; IgE: immunoglobulin E; FVC: forced vital capacity; FEV1: forced expiratory volume in 1 s; PEF: peak expiratory flow; FEF: 
forced expiratory flow.

Figure 1. S core scatter plot of PCA model for group asthma 
vs. control. The x- (PC1) and y- (PC2) axes indicate the first and 
second principal components, respectively. The circle rep-
resents the 95% confidence interval.

https://doi.org/10.1080/02770903.2024.2338865
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could be selected, including traumatic acid (fatty 
acids), dodecanedioic acid (fatty acids), and gluco-
brassicin (sugars) (Table 2). As shown in Figure 3, 
the levels of traumatic acid and dodecanedioic acid 
in the urine samples of asthma patients are lower 
than those of healthy controls, and the expression of 
corresponding enzyme-encoding genes may be strongly 
inhibited, while glucobrassicin is the opposite. To fur-
ther understand whether the changes between metab-
olites are coordinated, differentially abundant 

metabolite correlation analysis was performed. 
According to heatmaps, there was a positive correla-
tion between traumatic acid and dodecanedioic acid 
(Figure 4). ROC curves were constructed, and the 
AUC was calculated to further evaluate the diagnostic 
efficacy of the above metabolites. All three metabolites 
had a certain accuracy (AUC 0.7–0.8) (Figure 5).

Construction of metabolic pathways based on 
differential metabolites

Through the analysis of metabolic and regulatory path-
ways, a more comprehensive and systematic under-
standing of the changes in biological processes caused 
by changes in experimental conditions can be obtained. 

Figure 2. S core scatter plot and permutation plot test of OPLS-DA model for group asthma vs. control. (a) Score scatter plot of 
OPLS-DA model for group asthma vs. control. The x- (t[1]P) and y- (t[1]O) axes indicate predictive and orthogonal directions, 
respectively. The circle represents the 95% confidence interval. (b) Permutation plot test of OPLS-DA model for group asthma vs. 
control. R2 and Q2 indicate interpretability and predictability, respectively.

Table 2.  Identification of differentially abundant metabolites in urine between asthmatic and healthy subjects.

ID Peak RT MZ Mean asthma Mean control VIP p Value q Value
Fold 

change
Log_fold 
change

Upward
641 Glucobrassicin 318.132 227.1288629 0.009093848 0.022281495 1.13 0.012 0.396 6.52 2.70
Downward
432 Dodecanedioic acid 286.505 229.1445467 0.005731273 0.016753875 1.14 0.032 0.396 0.34 −1.55
307 Traumatic acid 132.739 447.0566545 0.001480022 0.000227166 1.34 0.029 0.394 0.41 −1.29

RT: retention time; MZ: mass-to-charge ratio; VIP: variable importance in the projection.

Figure 3.  Volcano plot for group asthma vs. control. The x-axis 
indicates the change in multiples of each substance in the 
group (taking the logarithm base 2), and the y-axis represents 
the p value of the Student’s t-test (taking the negative loga-
rithm base 10). Significantly up-regulated metabolites are 
shown in red, significantly down-regulated metabolites are 
shown in blue, and non-significantly differentiated metabolites 
are shown in gray.

Figure 4. H eatmap of correlation analysis for group asthma vs. 
control. The x- and y-axes represent the differential metabo-
lites in this group of contrasts, with red indicating a positive 
correlation and blue indicating a negative correlation.
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Figure 5. RO C analysis for distinguishing asthma patients from healthy controls. (a) ROC analysis of dodecanedioic acid (AUC = 
0.75). (b) ROC analysis of glucobrassicin (AUC = 0.74). (c) ROC analysis of traumatic acid (AUC = 0.74).

Figure 6. M etabolic pathways. Blue represents down-regulated significantly differentiated metabolites.
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The differentially abundant metabolites were introduced 
into the KEGG pathway database for analysis, obtaining 
a metabolic pathway – α-linolenic acid metabolism-Homo 
sapiens (human) (hsa00592) – in which the level of 
traumatic acid decreased (Figure 6). According to the 
enrichment results of differentially abundant metabo-
lites in the KEGG metabolic pathway, this metabolic 
pathway belongs to lipid metabolism (p < 0.05, Rich 
Factor = 0.023) (Figure 7a). Differential abundance 
scores showed that the overall expression of the path-
way tended to be downregulated (Figure 7b).

Discussion

Asthma has an early onset compared to other chronic 
diseases and has a long-term negative impact on 
patients’ quality of life (23). However, the current 
diagnosis of asthma is mainly based on patients’ clin-
ical symptoms, pulmonary function tests, and drug 

treatment response, which cannot determine whether 
patients have the disease in an early stage (8). 
Therefore, the prevention, diagnosis, and treatment 
of early asthma can be successfully achieved through 
noninvasive detection of airway dysfunction and 
inflammation and early diagnosis by identifying bio-
markers (24). Metabolomics can reveal the underlying 
mechanism of disease through the quantitative anal-
ysis of small molecules in organisms. Therefore, in 
this study, we analyzed and compared the urine met-
abolic profiles of asthmatic children and healthy con-
trols based on the LC–MS metabolomics method to 
deepen the understanding of the pathophysiological 
pathways of childhood asthma. In this study, we 
observed differences in three metabolic substances 
and one metabolic pathway between children with 
asthma and healthy controls, which means that we 
may be able to use these differences to prevent and 
manage asthma disease in the future.

Figure 7.  KEGG enrichment and differential abundance score for group asthma vs. control. (a) KEGG Enrichment for group asthma 
vs. control. The x-axis represents the Rich Factor, and the y-axis represents the KEGG metabolic pathway name. The color indicates 
the size of the p value, and the smaller the p value, the redder the color. (b) Differential Abundance Score for group asthma vs. 
control. The x-axis represents the DA Score and the y-axis represents the KEGG metabolic pathway name. The DA Score reflects 
the overall change of all metabolites in the metabolic pathway, and the score −1 indicates a downward trend in the expression 
of all annotated differential metabolites in the pathway.
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Some previous studies have identified some metab-
olites in the metabolic profile of asthma as possible 
biomarkers by using biological fluids from clinical sam-
ples combined with metabolomic approaches. Among 
them, several studies have reached similar conclusions. 
For example, differences in the gut microbiota result in 
lower expression levels of α-linolenic acid metabolism 
in patients with allergic rhinitis than in nonallergic 
rhinitis individuals (25). Rohmann et  al. reported that 
analysis of serum markers in allergic patients based on 
Fourier transform ion cyclotron resonance mass spec-
trometry (FT-ICR-MS) metabolomics revealed enrich-
ment of the α-linolenic acid metabolic pathway and the 
found metabolic marker OPC6-CoA, which overlapped 
with the metabolic pathway of traumatic acid in our 
study (26). Asthma, as a heterogeneous disease of mul-
tiple gene–environment interactions, is often associated 
with type 2 inflammation, and many allergen compo-
nents can induce the onset of asthma (9,27). Therefore, 
research on allergies can support the close relationship 
between α-linolenic acid metabolism and asthma to a 
certain extent. In addition, Zhu et  al. analyzed the rhi-
nitis metabolomic analysis of infants hospitalized with 
bronchiolitis and concluded that infants with metabolic 
type B (high abundance of amino acids and low abun-
dance of polyunsaturated fatty acids) have a significantly 
higher risk of asthma with an enriched amino acid and 
α-linolenic acid/linoleic acid metabolic pathway (13). 
Taken together, these observations confirm that dysreg-
ulation of α-linolenic acid metabolism plays a key role 
in the development of childhood asthma and may serve 
as a new therapeutic target for asthma.

α-Linolenic acid is an indispensable polyunsatu-
rated fatty acid in the human body, and its role as 
an immunomodulator has been shown to be associ-
ated with asthma (28). α-Linolenic acid can be con-
verted into eicosapentaenoic acid in the human body, 
thereby inhibiting arachidonic acid metabolism and 
blocking leukotriene production in vitro and inflam-
matory processes in vivo (29,30). Observational stud-
ies and randomized controlled trials have also shown 
that polyunsaturated fatty acids have a protective 
effect on the development of asthma: maternal intake 
of high levels of omega-3 polyunsaturated fatty acids 
during pregnancy reduces the risk of asthma and 
wheezing in offspring (14). Meanwhile, a higher 
plasma ratio of omega-3 polyunsaturated fatty acids 
in childhood and adolescence was associated with a 
22% lower risk of asthma in early adulthood (31). 
According to our experimental results, the downreg-
ulated traumatic acid that is the product of α-linolenic 
acid metabolism, along with dodecanedioic acid, 
belongs to the category of fatty acids and shows a 

positive correlation (Figure 4). Therefore, it can be 
inferred that fatty acids, including α-linolenic acid, 
will be affected to some extent in children with 
asthma, which may provide new therapeutic target 
for children with asthma in the future.

Our study has several potential limitations. First, 
the sample size of this study is relatively small, and 
the results cannot be completely extrapolated to all 
patients with asthma, which needs to be verified by 
larger studies. Second, this study is a cross-sectional 
study that lacks time and cannot confirm the causal 
relationship between urine metabolic changes and 
asthma. A longitudinal study to assess the temporal 
dynamics of the identified metabolic changes in chil-
dren with asthma will be needed. Third, the molecular/
cellular biological mechanisms of asthma and differ-
entially abundant metabolites need to be further elu-
cidated. Fourth, there are other possible confounding 
factors in this study, such as race, lifestyle, and diet.

Conclusions

In conclusion, this study suggests that metabolic differ-
ences can be observed in the urine samples of asthmatic 
patients and healthy controls, and α-linolenic acid met-
abolic pathways may be involved in the pathogenesis 
of asthma, which will help further study metabolically 
targeted strategies for asthma prevention and treatment.
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