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Chemical characterization of nanoparticles and volatiles present
in mainstream hookah smoke
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David A. Hermanb , Norbert Staimerc, Michael T. Kleinmanb , Sergey A. Nizkorodova , and
James N. Smitha

aDepartment of Chemistry, University of California, Irvine, California, USA; bSchool of Medicine, University of California, Irvine,
California, USA; cDepartment of Epidemiology, University of California, Irvine, California, USA

ABSTRACT
Waterpipe smoking is becoming more popular worldwide and there is a pressing need to bet-
ter characterize the exposure of smokers to chemical compounds present in the mainstream
smoke. We report real-time measurements of mainstream smoke for carbon monoxide, volatile
organic compounds and nanoparticle size distribution and chemical composition using a cus-
tom dilution flow tube. A conventional tobacco mixture, a dark leaf unwashed tobacco, and a
nicotine-free herbal tobacco were studied. Results show that carbon monoxide is present in
the mainstream smoke and originates primarily from the charcoal used to heat the tobacco.
Online measurements of volatile organic compounds in mainstream smoke showed an over-
whelming contribution from glycerol and its decomposition products. Gas phase analysis also
showed that very little filtration of the gas phase products is provided by the percolation of
mainstream smoke through water. Waterpipe smoking generated high concentrations of
4–100nm nanoparticles, which were mainly composed of sugar derivatives and especially
abundant in the first 10min of the smoking session. These measured emissions of volatiles
and particles are compared with those from a reference cigarette (3R4F) and represent the
equivalent of the emission of one or more entire cigarettes for a single puff of hookah smoke.
Considerations related to the health impacts of waterpipe smoking are discussed.
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1. Introduction

Waterpipe smoking (also known as narghile or hookah
depending on cultural traditions) is a way of smoking
tobacco in which air is passed over heated charcoal, which
transfers its thermal energy to the tobacco located in the
head of the hookah underneath the charcoal, producing
smoke. The smoke, composed of both charcoal burning
products and compounds released from the heated
tobacco, is entrained down the stem of the waterpipe and
bubbles through water by the action of puffing on the
waterpipe hose before being inhaled by the smoker. The
attraction for this mode of smoking tobacco is driven by
the variety of available tobacco flavors, the absence of vis-
ible side-stream smoke, the social aspect of smoking in
group, the misconception that waterpipe smoking is less
harmful than smoking cigarettes due to the possible filtra-
tion effects provided by the water, and the prevalence of

advertised nicotine-free tobacco (Akl et al. 2013; Aljarrah,
Ababneh, and Al-Delaimy 2009; Salloum et al. 2015).

The number of waterpipe smokers is significant
and on the rise in the United States (Cobb et al. 2010;
Sutfin et al. 2014) and worldwide (Martinasek,
McDermott, and Martini 2011; Maziak 2011).
Waterpipe use is growing most dramatically among
university students and other young adults (Aslam
et al. 2014; Grekin and Ayna 2008; Primack et al.
2008). Smith et al. (2011) reported that the usage of
waterpipe by all adults (ages > 18) had increased by
41.8% (men) and 47.4% (women) from 2005 to 2008
in California, and by young adults (ages 18–24) by
about 24%. In a different study, Grekin and Ayna
(2012) showed that 1 out of 5 college students in the
United States and Europe had smoked waterpipes in
2011, and 1 out of 4 college students in the Middle
East had smoked waterpipes in the last month prior
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the survey. Furthermore, data from a recent National
Youth Tobacco Survey (NYTS) (Jamal et al. 2017)
reported an increase in the usage of waterpipe among
high school (4.1% to 4.8%) and middle school stu-
dents (1.0% to 2.0%) in the United States from 2011
to 2016. As a consequence, there is a growing concern
for understanding impacts of waterpipe smoking on
human health and needs for regulations (Maziak
2011; World Health Organization 2015).

Numerous carcinogens and toxic pollutants have
been previously identified in mainstream hookah
smoke (smoke directly inhaled by the smoker) includ-
ing nicotine (Katurji et al. 2010; Schubert et al. 2011a;
Shihadeh 2003; Shihadeh and Saleh 2005; Shihadeh
et al. 2012), nitrosamines (Schubert et al. 2011a), aro-
matic amines (Schubert et al. 2011b), polycyclic aro-
matic hydrocarbons (PAHs) (Hammal et al. 2015;
Monzer et al. 2008; Schubert et al. 2011a; Sepetdjian,
Shihadeh, and Saliba 2008; Shihadeh and Saleh 2005;
Shihadeh et al. 2012), volatile carbonyl compounds (Al
Rashidi, Shihadeh, and Saliba 2008; Hammal et al.
2015; Schubert et al. 2012b; Shihadeh et al. 2012), ben-
zene (Schubert et al. 2015), phenols (Schubert et al.
2015; Sepetdjian et al. 2013), furans (Schubert et al.
2012a), carbon monoxide (CO) (Hammal et al. 2015;
Katurji et al. 2010; Monn et al. 2007; Monzer et al.
2008; Schubert et al. 2011a; Shihadeh et al. 2014;
Shihadeh and Saleh 2005; Shihadeh et al. 2012), nitric
oxide (Hammal et al. 2015; Shihadeh et al. 2014;
Shihadeh et al. 2012), and heavy metals (Schubert et al.
2015; Shihadeh 2003). In addition, waterpipe tobacco
smoking has been associated with negative impacts on
the respiratory and cardiovascular systems, periodontal
diseases, low birth weight, cancers, and a higher risk for
infection due to sharing the mouthpiece (Akl et al.
2010; Aslam et al. 2014; El-Zaatari, Chami, and Zaatari
2015; Fakhreddine, Kanj, and Kanj 2014; Kim, Kabir,
and Jahan 2016; Rezk-Hanna and Benowitz 2018).

Carbon monoxide is well-known for binding to the
hemoglobin to form carboxyhemoglobin (CO-Hb) and
thus inhibiting the hemoglobin’s ability to bind with
vital oxygen. Several acute CO poisoning cases have
been previously reported for waterpipe smokers where
levels of CO-Hb were almost always higher than 20% of
total hemoglobin (Cavus et al. 2010; Eichorn et al. 2018;
La Fauci et al. 2012; Lim, Lim, and Seow 2009; Retzky
2017; Veen 2016). CO levels are influenced by the
choice of heat source, and the design of the waterpipe.
For example, Monzer et al. (2008) reported that CO lev-
els in mainstream hookah smoke can be reduced by a
factor of 10 when using a custom-built electrical heater
instead of charcoal, and Saleh and Shihadeh (2008)

reported that switching from plastic to more permeable
leather hose would reduce the CO concentration ultim-
ately inhaled by the smoker by about half; however, the
CO emitted directly from the charcoal and that escaping
from the mainstream smoke will still be present in the
air surrounding the smoker (sidestream smoke).

All previously reported chemical investigations relied
on off-line analysis techniques, which are often time-con-
suming, lack sensitivity towards low-volatility gases and
small particles, and have primarily focused on total toxic
pollutant and particle yields. Additionally, off-line analy-
ses often integrate over an entire smoking session, so
examinations of the time evolution of the concentration
or composition in the mainstream smoke during session
were not possible. The present work introduces a new
approach to the study of waterpipe mainstream smoke
by allowing online measurements of CO, volatile organic
compounds (VOCs) and particle size distributions and
chemical composition. Thermal Desorption Chemical
Ionization Mass Spectrometry, TDCIMS (Smith et al.
2004), is applied for the first time for characterizing
waterpipe mainstream smoke chemical composition, and
this is the first report of real-time size distributions of
particles in mainstream waterpipe smoke. Although on-
line measurements of VOCs using proton-transfer-reac-
tion mass spectrometry (PTR-MS) has been previously
applied to smoke from cigarettes (Brinkman et al. 2015;
Gordon et al. 2011) and e-cigarettes (Blair et al. 2015;
Breiev et al. 2016), this is the first application of this tech-
nique to mainstream waterpipe smoke.

Our study compared the emissions from a glass
waterpipe using three different tobacco mixtures,
including one unwashed dark leaf tobacco and a nico-
tine-free herbal tobacco, following a modified Beirut
protocol smoking pattern (4 s puff duration, 2min�1

puff frequency, 860ml puff volume). These conditions
were well within the range of conditions recorded
from a cohort of waterpipe smokers in Beirut,
Lebanon (Shihadeh 2003; Shihadeh et al. 2004) from
which the Beirut protocol was established, and very
similar to recent studies performed in the US involv-
ing established waterpipe users (Brinkman et al. 2018;
Kim et al. 2016). Typical waterpipe smoking duration
recorded in natural and laboratory settings range
between �20min up to > 60min (Jawad et al. 2019;
Maziak et al. 2009; Shihadeh 2003). In addition, acute
health effects studies are oftentimes reported for a
30min smoking duration (El-Zaatari, Chami, and
Zaatari 2015). As a result, a representative 30min
smoking session duration was selected for this study.
All reported concentrations are given hereafter as the
concentrations of each toxic pollutant directly emitted
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from the waterpipe during smoking, i.e., after
accounting for the dilution necessitated by the meas-
urement devices. The emissions from waterpipe
experiments were directly compared with emissions
from a reference cigarette (3R4F), also measured in
this work, and potential risks and impacts on health
are discussed.

2. Material and methods

A brief description of the experimental procedure is
provided below, but further details can be found in
the online supplementary information (SI), including
the complete waterpipe smoking protocol and the
details of the instrument operations. All smoking ses-
sions were performed using the same waterpipe
(Anahi Smoke, model “Fantasy”) which was con-
structed entirely of glass for ease in cleaning (SI
Figure S1). At the beginning of each experiment, 10 g
of tobacco were packed loosely in the head of the
waterpipe, which is wrapped with a pre-punched alu-
minum foil (Starbuzz Tobacco Inc., Starbuzz Premium
foil). Three different tobacco mixtures were tested in
this study, including a conventional tobacco (Al
Fakher, apple flavor), a nicotine-free herbal tobacco
(Hydro Herbal, banana flavor) and an unwashed dark
leaf tobacco (Vintage by Starbuzz, Dark Mist,
blackberry flavor). Then, three charcoal cubes (100%
natural coconut husks; Black Diamond) were lighted
and placed atop the head to uniformly heat the
tobacco (SI Figure S1). The smoking session lasted for
30min, using the following smoking regimen: puff
frequency, 2 puff/min; puff duration, 4 s; puff volume,
860mL. Control experiments including no charcoal
(or charcoal only), no water (or water only), or no
tobacco, were also performed to identify the sources
of both the organic gases and particles. Lastly, as gly-
cerol is a major component of the tobacco formula-
tions, a control experiment with pure glycerol (EMD
Millipore, ACS grade) instead of the tobacco
was conducted.

A fast flow dilution system was developed to dilute
the mainstream smoke emission of the waterpipe to
levels manageable by our analytical instruments as
well as to provide continuous flow conditions that are
needed for stable instrument operation. A diagram of
the system is presented in Figure 1. Additional details
on the dilution system can be found in SI, including
the characterization of the transmission efficiency of
the particles through the dilution system (SI Figures
S2–S4). The total dilution factor of the waterpipe
emission sampled through the entire system ranged

from 241 to 325. An average value of 276 ± 34 (1r) is
used hereafter for all calculations.

The mainstream smoke sampling train was com-
posed of a series of dedicated instruments including a
scanning mobility particle sizer (SMPS; TSI) to meas-
ure size distribution of particles, a CO monitor
(Thermo Fisher Scientific, model 48i) and two mass
spectrometers measuring the volatiles (PTR-ToF-MS,
model 8000, Ionicon Analytik) (Jordan et al. 2009)
and the particle chemical composition (TDCIMS)
(Lawler et al. 2018; Smith et al. 2004). All details of
the instrumentation operation are given in SI.
Additionally, two relative humidity and temperature
probes (Vaisala Corp., model HMP110) were placed
at the entrance and exit of the dilution system.

Although this study focused on the mainstream
emissions from waterpipe, a comparative study with
one type of reference cigarette (3R4F, University of
Kentucky) was conducted using the same fast flow
dilution system. This type of cigarette has a filter ven-
tilation of 20%, high tar (9.40mg/cig.) and a nicotine
content of 0.73mg/cig (Sampson et al. 2014). Details
of the smoking regimen and protocol are provided
in SI.

3. Results and discussion

For all the waterpipe experiments, an optically dense
white aerosol formed within the waterpipe at the first
puff, and was maintained throughout the 30-min
smoking session. No side stream smoke was observed
in any experiments. The tobacco mixtures were all
weighed at the end of the sessions, and an average
loss of 2.26 0.4 g (out of the initial 10 g) was meas-
ured. Control experiments performed in absence of
water showed a similar behavior. Experiments carried
out with �4 g of pure liquid glycerol instead of the
tobacco only yielded a loss of �0.2 g of glycerol over
the 30-min smoking session.

In a separate experiment, the temperature in the
head of the hookah (i.e., the place where the tobacco
resides) was measured using a thermocouple (Omega,
probe type K). The temperature ranged from 265˚C to
318˚C during the 30-min smoking session. Although
three charcoal cubes were necessary to uniformly heat
the tobacco mixture, the temperature recorded in this
study was in agreement with a previous measurement
using one easy-lighting briquette (Monzer et al. 2008).
Measurements indicated that at every puff, the tem-
perature inside the head of the hookah decreased by
�50˚C for the duration of the puff (as sample air was
drawn into the head of the hookah) and then rose up
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between puffs. For comparison, the temperature (and
RH) of the mainstream smoking exiting the waterpipe
and at the outlet of the dilution system is presented in
SI Figure S5.

3.1. Gas phase measurements

3.1.1. Carbon monoxide
Due to instrument malfunction, the CO monitor was
available for only selected experiments with the con-
ventional tobacco and for the 3R4F reference ciga-
rettes. No significant differences were observed for the
full waterpipe experiment (tobaccoþwaterþ charcoal)
and the controls (no water; charcoal only). A separate
experiment was carried out without charcoal (no heat)
showing no detectable CO, confirming that CO
mainly came from the combustion of the charcoal,
consistent with previous reports (Monzer et al. 2008).
After correcting for calibration bias and dilution, an

average mixing ratio of 2.1 (60.6) � 103 ppm of CO
was observed from the waterpipe mainstream smoke,
compared to 3.3 (60.3) � 104 ppm from the cigarette
smoke. The estimated mass of CO inhaled in 1 puff of
mainstream smoke was 2.0 (60.6) mg and 1.4 (60.1)
mg respectively for the hookah and cigarette smoke.
Those results are in agreement with previously
reported CO dose from mainstream smoke by Monn
et al. (2007). If this dose is integrated over the entire
waterpipe smoking session (i.e., 60 puffs), a total
amount of 121mg of CO is expected to be inhaled
per session. For comparison with literature values
summarized in Shihadeh et al. (2015), our measure-
ment was multiplied by a factor of 2 to account for
the difference in smoking time (all reported studies
were for �1hr smoking session), and yield a total of
242mg CO emitted, which is well within the range
reported by previous studies (e.g., 57–367mg/session).
Likewise, the integrated dose of CO from one cigarette

Figure 1. Diagram of the fast flow dilution system used in the waterpipe smoking experiments. A fraction of the total puff flow is
sampled through the dilution system (F2, �3 L min�1) while the rest is pumped off (F1, �10 L min�1). Dilution air from a purge
air generator is provided in the two stages of dilution and the flows in and out are balanced (F4¼ F40 and F5¼ F50). Flows F2
and F3 are equal and governed by the sum of the analytical instruments connected at the end of the mixing section as
F2¼ F3¼ Ftotal ¼ FTDCIMS þ FSMPS þ FPTR-ToF-MS þ FCO.
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was 9.7mg, which is also in agreement with previ-
ously reported values (Eldridge et al. 2015; Roemer
et al. 2012). Therefore, the dose of CO from a single
waterpipe smoking session was equivalent to a dose of
CO from 12 references cigarettes.

3.1.2. Volatile organic compound measurements
Figures 2a–b represents typical background subtracted
mass spectra obtained from the conventional tobacco
mixture and the 3R4F reference cigarette, respectively
(the background corresponds to the baseline signal
intensity before the smoking session started). For
comparison, the mass spectra for the other tobacco
mixtures are presented in SI Figure S6.

All spectra derived from hookah mainstream smoke
show the distribution of VOC-derived ions observed
during the last 5min (10 puffs) of the smoking ses-
sion. Ions at nominal m/z 41, 43, 45, 57, 59, 61, 75,
and 93 were the major common ions observed for all
three tobacco mixtures (Figure 2a and SI Figure S6).
Table 1 reports the likely attributions for the ions
observed in this study. These attributions are consist-
ent with previously reported assignments from PTR-
MS measurements (de Gouw and Warneke 2007;
Yuan et al. 2017), and in addition, each m/z observed

in our experimental mass spectra matched the exact
mass of the assigned chemical to within 3 mDa, which
is an acceptable error on accurate mass determination
for m/z up to 1000Da (Greaves and Roboz 2014).

SI Figure S7 illustrates the advantage of using a
high resolution time-of-flight mass spectrometer that
allows the differentiation between molecular formulas
having the same nominal mass. With the exception of
m/z 91 (glyceraldehyde), 93 (glycerol) and 163 (nico-
tine), all compounds have been previously reported in
biomass burning samples (Brilli et al. 2014; Bruns
et al. 2017; Fitzpatrick et al. 2007; Karl et al. 2007;
Muller et al. 2016; Stockwell et al. 2015; Warneke
et al. 2011), so it is not surprising to observe them in
this study.

It is interesting to note that all three tobaccos show
similar patterns in the relative intensity of the
detected ions (SI Table S1), with the exception of the
conventional tobacco which exhibits a larger contribu-
tion from m/z 59.049, 41.039, and 31.018 than the
other two tobaccos. The differences between tobaccos
are likely due to the differences in flavoring. The
nicotine-free herbal tobacco shows, in general, a
higher ion intensity at every major ion, including m/z
117.055 ([C5H8O3 þ H]þ) that is clearly visible in the

Figure 2. Typical unit mass resolution PTR-ToF-MS mass spectra from (a) the waterpipe mainstream smoke of the conventional
tobacco and (b) the 3R4F reference cigarette. All spectra were collected at the end of the smoking session (the last 10 puffs for
the waterpipe sample, and the last puff for the cigarette sample) and the background signal has been subtracted out.
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spectra. We assigned this ion to 1-acetoxyacetone
(Table 1) because it was previously found in pine
wood combustion samples (Fitzpatrick et al. 2007).

Mass spectra from control experiments, which
include experiments performed without any tobacco
(charcoalþwater only), with the conventional tobacco
but no charcoal (no heat) and only glycerol (replacing
the tobacco) are given in SI Figure S8. The major
common ions (nominal m/z 43, 45, 57, 61, and 75)
observed in the waterpipe mainstream smoke were
common to all spectra, including that of glycerol (pro-
pane-1,2,3-triol). Upon thermal decomposition, gly-
cerol has been reported to form not only two major
products, namely acetaldehyde (C2H4O, MW ¼ 44 g
mol�1) and acrolein (C3H4O, MW ¼ 56 g mol�1), but
also 3-hydroxypropanal (C3H6O2, MW ¼ 74 g mol�1),
1-hydroxypropan-2-one (C3H6O2, MW ¼ 74 g mol�1),
hydroxyacetone (or acetol; C3H6O2, MW ¼ 74 g
mol�1), glycolaldehyde (C2H4O2, MW ¼ 60 g mol�1),
and acetic acid (C2H4O2, MW ¼ 60 g mol�1) (Corma
et al. 2008; Hemings et al. 2012; Jensen, Strongin, and

Peyton 2017; Katryniok et al. 2010; Martinuzzi et al.
2014; Nimlos et al. 2006). Ionization of these com-
pounds in the PTR-ToF-MS ion source would give
the observed [MþH]þ ions. Both acetic acid and gly-
colaldehyde are known to fragment under typical
PTR-MS conditions such as the ones applied here, to
give an additional fragment at m/z 43.018 (C2H3O

þ)
(Baasandorj et al. 2015). Though, acetic acid is
thought to be formed from secondary oxidation pro-
cess (Jensen, Strongin, and Peyton 2017; Katryniok
et al. 2010), it is more likely that the peaks at m/z 61/
43 are due to glycolaldehyde instead. Further evidence
for this assignment is the presence of a minor peak at
m/z 91.039 attributed to glyceraldehyde (SI Figure S7),
which was previously proposed as an intermediate in
the decomposition process of glycerol leading to gly-
colaldehyde. (Jensen, Strongin, and Peyton 2017).

In addition, experiments and theoretical calcula-
tions demonstrated that the protonated [MþH]þ ion
of glycerol at nominal m/z 93 can itself undergo dehy-
dration to yield ions at m/z 75, 61, 57, 45, and 43

Table 1. Ions observed in the PTR-ToF-MS mass spectra from the waterpipe mainstream smoke samples (conventional tobacco;
nicotine-free herbal tobacco; dark leaf unwashed tobacco) and the 3R4F reference cigarette.
Nominal m/z Exact m/z Empirical formula Assigned compound

31 31.018 [CH2OþH]þ Formaldehyde
33 33.033 [CH4OþH]þ Methanol
41 41.039 [C3H4 þ H]þ Propadienea

42 42.034 [C2H3NþH]þ Acetonitrileb

43 43.018 [C2H2OþH]þ Acetic acid fragment,c glycolaldehyde fragment,c hexyl acetate fragmentd

43.054 [C3H6 þ H]þ Propylenea

45 45.033 [C2H4OþH]þ Acetaldehyde
47 47.013 [CH2O2 þ H]þ Formic acid

47.049 [C2H6OþH]þ Ethanol
57 57.033 [C3H4OþH]þ Acrolein, hexyl acetate fragmentd

57.070 [C4H8 þ H]þ Butenea,b

59 59.049 [C3H6OþH]þ Acetone, propionaldehyde, methyl vinyl ether
61 61.028 [C2H4O2 þ H]þ Acetic acid, hydroxyacetaldehyde (glycolaldehyde)
69 69.033 [C4H4OþH]þ Furan

69.070 [C5H8 þ H]þ Isoprenea

75 75.044 [C3H6O2 þ H]þ Hydroxyacetone (acetol), 3-hydroxypropanal, 1,3-dihydroxypropene,
glycerol fragment (-H2O)

79 79.054 [C6H6þH]þ Benzenee

91 90.948 FeOH(H2O)
þ Intrinsic ion from the PTR-ToF-MS ion sourcef

91.039 [C3H6O3þH]þ Glyceraldehyde, lactic acid
91.054 [C7H6þH]þ Fragment from benzyl compoundsg

93 93.055 [C3H8O3 þ H]þ Glycerol
93.070 [C7H8 þ H]þ toluene

117 117.055 [C5H8O3 þ H]þ 1-acetoxyacetoneh

163 163.123 [C10H14N2 þ H]þ Nicotine
aCorrespond to compounds often found in biomass burning samples (refer to Brilli et al. (2014) and references therein); significant in the cigar-
ette samples.

bNot present in the waterpipe mainstream smoke.
cRefer to Baasandorj et al. (2015) and Haase et al. (2012).
dHexyl acetate was found in biomass burning (Brilli et al. 2014) as well as in numerous waterpipe tobacco mixtures acting as a flavoring agent (Schubert
et al. 2013).

eSignificant in the cigarette samples; ethylbenzene fragment can also contribute to m/z 79 (Rogers et al. 2006), however, ethylbenzene (m/z 107) was
only observed in the cigarette sample (see SI Figure S7).

fRefer to Schroder et al. (2008).
gNo clear source for the tropylium ion (C7H7

þ) could be found here, although Sovova et al. (2011), reported that phytogenic compounds such as benzyl
acetate or benzyl benzoate can produce efficiently this ion upon SIFT-MS ionization. Benzyl acetate was found in numerous flavor waterpipe tobacco
mixtures (Schubert et al. 2013).

hPreviously identified in pine wood combustion samples (Fitzpatrick et al. 2007) and African grass (Stockwell et al. 2015).
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(Dass 1994; Nimlos et al. 2006). Note, although the
glycerol parent ion at m/z 93.055 was observed in the
waterpipe mainstream smoke of all three tobacco, it
was not detectable in the glycerol experiment due to a
very low concentration of glycerol in the gas phase
sampled (but was observed for pure glycerol particles
measured in separate experiments; SI Figure S8d).
Alcohols are known to readily fragment by losing a
molecule of water upon proton transfer reaction ion-
ization process via reaction with H3O

þ (Spanel and
Smith 1997) and only at high concentration the parent
peak was observable. In brief, glycerol related peaks
overwhelm the mass spectra of the gas phase products
emitted by the waterpipe during smoking, and this is
not surprising as it is used as a wetting agent or
humectant for the tobacco (Rainey et al. 2013;
Schubert et al. 2011a, 2012a, 2012b). Our results are
also consistent with a previous study by Schubert
et al. (2011a) in which significant amount of glycerol
in waterpipe mainstream smoke was measured (up to
423mg/session).

As seen in Figure 2b, the PTR-MS spectrum of
mainstream smoke from the waterpipe experiment is
very different from that of the 3R4F reference cigar-
ette smoke. The latter shows a different distribution of
ions, including significant signal intensities at m/z
42.034 (acetonitrile), 33.034 (methanol), 69.070 (iso-
prene) and 79.054 (benzene). While methanol is vis-
ible in the conventional tobacco mass spectra,
acetonitrile is not present in any of the waterpipe
samples as illustrated by the high resolution mass
spectra of nominal m/z 42 (SI Figure S7). A peak at
m/z 69.034 ([C4H4OþH]þ) is also observed as a
minor peak in the MS spectra for the waterpipe main-
stream smoke, attributed to a furan compound, while
in the cigarette smoke, it is attributed to isoprene
(m/z 69.0704, [C5H8þH]þ) (Table 1, SI Figure S7).
Present in cigarette smoke, a peak at m/z 79.054
attributed to benzene was also identified as a minor
contributor of hookah mainstream smoke (SI Figure
S9) consistent with previous studies (Schubert et al.
2015; Shihadeh et al. 2015). Although a small fraction
of benzene found in the hookah smoke was emitted
from the charcoal only, most of the benzene measured
in the conventional and nicotine-free herbal tobacco
originated from the tobacco itself upon heating (SI
Figure S9). Lastly, an ion at m/z 163.123 indicative of
nicotine (C10H14N2) was observed in the cigarette
mainstream smoke sample. Nicotine was also detected
in the waterpipe mainstream smoke of both the con-
ventional and dark leaf unwashed tobacco as a minor
product, and none was measured for the nicotine-free

herbal tobacco (SI Figure S7). Instead, a peak at m/z
163.097 was observed for the herbal tobacco, and
assigned to [C7H14O4þH]þ ion.

SI Figure S10 represents the evolution of the PTR-
ToF-MS mass spectra as a function of smoking time
(each mass spectrum corresponding to an average
over 10 puffs) for the conventional tobacco runs per-
formed under ‘normal’ conditions (char-
coalþ tobaccoþwater) and for control experiments
without water present in the waterpipe. The time evo-
lution showed that, in both cases, the signal intensity
of each ion increased as a function of smoking time
(number of puffs) to reach a plateau, and no signifi-
cant differences exists with and without water present
in terms of ion distribution or intensities. However,
care should be taken to interpret the increase of the
signal as a function of time as a true emission profile
from the waterpipe, as instrument delays have been
observed previously to happen with sampling tubes
(Mikoviny, Kaser, and Wisthaler 2010; Pagonis
et al. 2017).

Two exceptions exist when comparing experiments
ran with and without water in the waterpipe bowl,
which are the ions observed at m/z 33.034 and 47.049
(attributed to methanol and ethanol respectively).
Those ions appear to be particularly sensitive to the
presence of water, for which a strong filtration effect
is observed as illustrated in the expanded mass spectra
in SI Figure S11. This observation is consistent with
their respective Henry’s law constant (KH), which are
2.03 and 1.7mol m�3Pa�1 respectively (Sander 2015).
It is not surprising to observe no filtration effect for
carbonyls compounds measured in this study as their
KH values by comparison is much smaller with aver-
age values of, for example, 0.14mol m�3Pa�1 for acet-
aldehyde and 0.10mol m�2Pa�1 for acrolein (Sander
2015). Following a similar analysis, Al Rashidi,
Shihadeh, and Saliba (2008) previously demonstrated
that acetaldehyde, acrolein, propionaldehyde and
methacrolein all remained in the gas phase, while for-
maldehyde, the most soluble of the carbonyl com-
pounds measured, was found in the particle phase due
to its much higher solubility, KH � 43mol m�3Pa�1

(Sander 2015).
Although extremely soluble with KH � 7.2 x

103mol m�3Pa�1 (Sander 2015), the small nicotine
signal observed at m/z 163.125 was not noticeably
affected by the presence of water (SI Figure S11) sug-
gesting a very small trapping effect. Overall, our
observations show that water does not act as a filter
for volatile organic compounds under our smok-
ing conditions.
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The efficiency for water to filter out pollutants can
be influenced by different factors affecting the bubble
properties (controlling the exchange with the gas
phase), including the puff topography, the design of
the waterpipe (specifically the body stem), the amount
of water present and the depth of the body stem
immersed in the water that could be different from
one study to the other (Oladhosseini and Karimi
2016). As described earlier, our experiments were per-
formed with 800mL of deionized water and the body
stem (25.4 cm in length; 10–12mm inner diameter;
equipped with 6 slits, 1� 15mm) placed 39mm under
the water surface. Based on calculations from
Oladhosseini and Karimi (2016), the partitioning of
VOCs under our experimental conditions should not
reach equilibrium, and could be potentially enhanced
by reducing the diameter of the body stem, increasing
the immersion depth of the body stem, increasing the
total water volume placed in the bowl and increasing
the volume of the puff. However, based on a limited
number of published studies, lack of complete water
filtration is a common phenomenon among various
waterpipe designs. For example, Schubert et al.
(2011b) showed that aromatic amines are not effi-
ciently filtered by the water (amount not filtered by
the water ranging from 57 to 90%). In another recent
study, Schubert et al. (2012b) reported that carbonyl
compounds seemed to be filtered to a greater extent,
although a large fraction was still measurable in the
mainstream smoke (amount not filtered by the water
ranging from 20 to 42%). Similarly, Shihadeh (2003)
showed that nicotine was not completely removed due
to water absorption, and �23% remained present in
the mainstream smoke. Our work combined with pre-
vious studies suggest that significant amount of toxic

compounds will still reach the smoker’s mouth when
water is present in the bowl.

3.2. Size distribution of particles in
mainstream smoke

Figure 3a shows a typical particle size distribution of
mainstream smoke from the conventional tobacco
mixture, corrected for dilution, as function of time
during a full smoking session with the conventional
tobacco (charcoalþ tobaccoþwater). This is the first
report of real-time size distribution measurement of
particles from hookah mainstream smoke. Each scan
represents an average over 1min, which did not make
it possible to capture the individual isolated puffs, but
provided an average over 2 puffs (2 puffs/min smok-
ing frequency) which still captured the general
dynamics of the evolution of the size distribution
over time.

Ultrafine particles with diameters ranging from 4
to 100 nm are clearly visible at the beginning of the
session (first 10min), during which they dominate the
size distribution. Particles were observed to grow
quickly to larger diameters as the smoking session
proceeded, likely due to the stagnation of the large
concentration of particles within the waterpipe bowl.
The particle mode diameter was �80 nm during the
first 10min of the smoking session but shifted to
�200 nm for the remaining of the session.

The general trend observed for the conventional
tobacco is not unique; indeed, as can be seen in SI
Figure S12, the other two investigated tobacco mix-
tures showed the same significant contribution of
ultrafine particles early on in the smoking session. In
the case of the dark leaf unwashed tobacco, a

Figure 3. Typical size distributions for individual smoking sessions measured for (a) the conventional tobacco and (b) the 3R4F ref-
erence cigarette. Concentrations are corrected for dilution and size-dependent sampling losses through the experimental system.
The start of the smoking session corresponds to the sudden increase on the particle number concentration.

1030 V. PERRAUD ET AL.

https://doi.org/10.1080/02786826.2019.1628342
https://doi.org/10.1080/02786826.2019.1628342


persistent mode around 10 nm was observed through-
out the experiments, distinct from the other tobaccos.
This mode indicates that there was nucleation of new
particles from the mainstream smoke throughout the
smoking session. This observation is consistent with
the TDCIMS measurements described in detail below
in that organic compounds from the dark leaf
unwashed tobacco desorbed from the Pt wire at a
later time compared to the other two tobaccos, which
suggests lower volatility compounds and thus a greater
potential to nucleate particles.

Control experiments performed in the absence of
the water in the waterpipe bowl (SI Figure S13a)
showed particle number concentration and size distri-
bution that were similar to those when water was pre-
sent, suggesting that the water does not act as a filter
for those particles. This phenomenon was briefly men-
tioned in a previous study (Monn et al. 2007). This
observation is also consistent with previous studies
(Hogan et al. 2005; Spanne, Grzybowski, and Bohgard
1999; Wei, Rosario, and Montoya 2010) that demon-
strated that the collection efficiency for particles with
diameter ranging from 10 to �700 nm using the com-
monly used impinger technique (where the air sample
is bubbled through a reservoir containing water, simi-
lar to the waterpipe principle) is very small (less than
20% at 1–12 L min�1).

For comparison, Figure 3b presents a typical size
distribution of mainstream smoke from the 3R4F ref-
erence cigarette and shows that the mode of the distri-
bution is centered around 150 nm for the entire
duration of the session. Some ultrafine particles are
also present in the cigarette mainstream smoke, but
the majority of the particles have diameters larger
than 100 nm. It is important to note that the particles
from the hookah mainstream smoke likely underwent
a higher degree of evaporation during their transport
through the dilution system, as it has been reported
for e-cigarettes particles compared to reference cigar-
ette (Ingebrethsen, Cole, and Alderman 2012).
However, comparison between conditions can still
be made.

Ultrafine particles are expected to be deposited in
the deepest part of the respiratory tract (Chow and
Watson 2007; Hinds 1999). The smallest nanoparticles
(<50 nm) can even cross the blood-brain barrier
(Betzer et al. 2017; Oberdorster et al. 2004). To com-
pare the potential health impact of ultrafine particles
measured for hookah and cigarette mainstream smoke
inhaled into the respiratory tract, the particle concen-
tration for different size ranges was determined.
Figures 4a–d show the time profile of particles

concentrations with diameter d< 100 nm, d< 70 nm,
d< 50 nm, and d< 20 nm for the conventional
tobacco, charcoal only, the conventional tobacco run
without water in the bowl and the reference
3R4F cigarette.

It can be seen that the charcoal itself generated a sub-
stantial number of particles of all diameters at a rela-
tively constant concentration during the smoking
session. The mainstream smoke from the conventional
tobacco experiment showed an enhancement of nano-
particles of all size ranges at the beginning of the smok-
ing session (first 10min). The increase in the observed
particle number concentration is likely due to nucle-
ation from the vapors emitted from the tobacco. As the
smoking session proceeds, the particles grow and no
new particles are formed, as seen by the decrease in the
d < 20 nm and d < 50 nm particles concentration. This
is likely due to the increase in condensation sink caused
by the higher concentrations of large particles, which
effectively scavenge smaller particles. At the end of the
experiments, concentrations of d < 70 nm and d < 100
nm particles for the conventional tobacco and charcoal-
only are similar.

The experiment performed without water in the
bowl showed relatively low particle concentrations at
d< 20 nm in the first 10min of the smoking session,
but also much lower ultrafine particle concentrations
in general. It appears that, rather than acting as a pro-
tective filter for the user, the water vapor actually
appeared to support new particle formation in the
hookah mainstream smoke, likely due to the cooling
effect of the water, leading to higher concentrations of
ultrafine particles in general and the smallest size
classes in particular.

By comparison, cigarette smoke produced fewer
particles with d < 70 nm compared to the hookah
mainstream smoke, as shown in Figure 4c (first
10min). However, a similar concentration of particles
with d < 100 nm was observed for both the hookah
smoke and the 3R4F reference cigarette.

An averaged dose of ultrafine particles received by
one smoker (defined in this study as the total number
of particles inhaled in one puff of mainstream smoke)
was estimated from the size distribution data for both
the hookah and cigarette samples as follows:

dose ¼ C � dil:factor � volpuff

where C is the total particle concentration (particles
per cm3) measured by the SMPS averaged across all
three tobaccos at a time t, dil. factor is the averaged
dilution factor provided by the sampling system, and
volpuff is the volume of one puff of hookah smoke
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(860mL) or cigarette smoke (36mL). Table 2 shows
the comparison between hookah and cigarette total
ultrafine particle number received by a smoker for
one puff of smoke for each size range. Results showed
that the dose of particles received by one smoker was
much higher for the hookah mainstream smoke at the
beginning of a session than the cigarette mainstream
smoke, and the difference increased as the diameter of
the particles decreased. Taking the average values for
total ultrafine particles inhaled in one puff
(d< 100 nm), the dose received by one smoker per
hookah puff corresponded to smoking 2.4 cigarettes
(assuming 7 puffs/cigarette). However, at the very
beginning of the hookah session, when the concentra-
tion of the particles was the highest, the total particles
with d < 100 nm and d < 20 nm inhaled by one
smoker in one puff would be the equivalent of

smoking 5 and 25 cigarettes (assuming 7 puffs/cigar-
ette) respectively. After 10min, the dose of hookah
mainstream smoke particles received by one smoker
in one puff was somewhat comparable to the dose
from one 3R4F reference cigarette.

3.3. Chemical composition of ultrafine particles in
mainstream smoke

The chemical composition of ultrafine particles was
measured by TDCIMS. The size-resolved particulate
mass distribution collected by the instrument at early
times of a hookah smoking session is shown in SI
Figure S14, and indicates that the total mass collected
on the wire was dominated by particles with diame-
ters ranging from 40–80 nm. The mass spectra
obtained for each tobacco evaluated are presented in

Figure 4. Concentration profile of nanoparticles with diameters d< 20 nm (a), d< 50 nm (b), d< 70 nm (c) and d< 100 nm (d)
measured in the mainstream smoke as a function of smoking time for the conventional tobacco (black trace; n¼ 4), the coal only
experiment (pink trace; n¼ 3), the conventional tobacco with no water (red trace; n¼ 2) and the 3R4F reference cigarette (blue
cigarette; n¼ 3). Concentrations are corrected for dilution and for size-dependent transmission losses through the experimental
system. Error bars are one standard deviation of the mean.
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SI Figures S15(a–c), and the one corresponding the
reference cigarette in SI Figure S15d. The upper limit
for the m/z range in SI Figure S15 was restricted by
the resolution of the mass spectrometer, as it is diffi-
cult to unambiguously assign molecular formulas to
peaks above m/z 260. The lower limit of m/z 120 was
chosen to show primarily unfragmented species rather
than ionic fragments. Most ions smaller than this size
can have a major thermal decomposition component
(as evidenced by their late evolution in the TDCIMS
temperature ramp). Figure 5a represents the resulting
Kendrick mass defect plot based on CH2 units derived
from the mass spectra obtained for the conventional
tobacco mixture compared with the 3R4F reference
cigarette sample.

Major observed positive ions can be attributed
to sugar or polysacharide derivatives. One of the
major peaks observed in the mainstream smoke from
the conventional tobacco was at m/z 163.060 corre-
sponding to a chemical composition of [C6H11O5]

þ

(Figures 5a and SI Figure S15a), most likely indicating
particulate levoglucosan, a major combustion product
of cellulose and also likely arising from the sweetener
added to the tobacco. This peak is part of a series of
dehydrated compounds that arise from simple mono-
saccharide, C6H12O6 (detected as C6H13O6

þ, Figure
5a). The tobacco additive glycerol was likely the dom-
inant semivolatile component of the hookah smoke,
evidenced by very large signals in the gas phase back-
ground, indicating adsorption from the gas phase
onto the filament. Glycerol was sometimes detected as
a particle phase component, but the strong gas phase
background signal made detection equivocal in many
cases and for this reason it was excluded from plots.
However, glycerol appeared to form a condensation

product (C9H18O8) with a C6 monosaccharide in the
particle phase, and this product was a major compo-
nent of the hookah smoke aerosol.

Nicotine (C10H14N2) was also identified in the hoo-
kah mainstream particles for both the conventional
tobacco and the dark leaf unwashed tobacco, with a
protonated molecular ion peak at m/z 163.123
([C10H15N2]

þ). The resolving power of the instrument
was sufficient to distinguish it from the adjacent levo-
glucosan [C6H11O5]

þ peak t m/z 163.060 (SI Figure
S16). A higher fraction of nicotine was measured in
the dark leaf unwashed tobacco (SI Figure S15c),
which is often observed in unwashed dark leaf tobacco
products (Salloum et al. 2015). However, the particle
phase nicotine fraction of the cigarette smoke was
much higher than for any of the tobacco-generated
aerosol (SI Figure S15d). Nicotine was the major iden-
tified peak in the cigarette aerosol mass spectrum.
Presence of a relatively high amount of nicotine in the
particle phase by comparison to gas phase (PTR-ToF-
MS measurement described above) is consistent with
established gas-particle partitioning of nicotine that
favored particle phase in cigarette smoke, and its par-
titioning can be highly influenced by the temperature
and RH of the mainstream smoke (John et al. 2018;
Pankow 2001; Pankow et al. 2003).

Overall, the hookah smoke aerosol positive ion
TDCIMS mass spectra were very simple, largely con-
taining cyclic saccharide-derived polyols, with very lit-
tle influence of nitrogen-containing species (Figure 5).
This suggests that the actual tobacco was not very effi-
ciently aerosolized and that the additives may actually
dominate the composition of generated particles.
There were, in general, significant gas phase back-
ground signals from many compounds, consistent

Table 2. Averaged dose of particles inhaled by a smoker determined from size distribution measurements as a function of par-
ticle diameters defined as the total number concentration of particles contained in 1 puff (hookah puff volume ¼ 860mL; cigar-
ette puff volume ¼ 36mL).
Time after starting the session <100 nm <70 nm <50 nm <20 nm

Normal (n¼ 8)a

4min 9.92 (± 3.5) � 1010 6.07 (± 2.2) � 1010 3.73 (± 1.3) � 1010 2.09 (± 0.8) � 109

15min 3.55 (± 1.3) � 1010 1.34 (± 0.5) � 1010 4.83 (± 1.7) � 109 2.63 (± 0.9) � 107

Average 4.44 (± 0.8) � 1010 2.13 (± 0.5) � 1010 1.08 (± 0.4) � 1010 3.38 (± 1.5) � 108

No water (n¼ 2)b

4min 1.05 (± 0.6) � 1010 3.71 (± 2.0) � 109 1.29 (± 0.7) � 109 2.98 (± 1.5) � 106

15min 2.28 (± 1.2) � 109 4.87 (± 2.5) � 108 1.36 (± 0.8) � 108 4.21 (± 3.0) � 107

Average 4.76 (± 1.0) � 109 1.45 (± 0.4) � 109 4.75 (± 1.4) � 108 2.76 (± 0.6) � 107

No tobacco (n¼ 3)c

4min 9.39 (± 4.6) � 109 6.46 (± 3.2) � 109 4.14 (± 2.0) � 109 3.33 (± 1.7) � 108

15min 1.54 (± 0.8) � 1010 1.09 (± 0.5) � 1010 7.22 (± 3.5) � 109 5.32 (± 2.7) � 108

Average 1.37 (± 0.2) � 1010 9.92 (± 1.4) � 109 6.75 (± 1.0) � 109 5.37 (± 0.9) � 108

Reference cigarette (n¼ 3)
Average 2.68 (± 0.7) � 109 3.56 (± 1.0) � 108 7.31 (± 1.8) � 107 1.17 (± 0.2) � 107

aInclude all the tobacco (n¼ 4 for the conventional tobacco; n¼ 2 for the nicotine-free herbal tobacco; n¼ 2 for the dark leaf unwashed tobacco).
bConventional tobacco (n¼ 2).
cIncludes the run with glycerol in the place of the tobacco.
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Figure 5. (a) Kendrick mass defect plot based on CH2 units from TDCIMS measurements and (b) Double bond equivalent plot for
TDCIMS-detected ions for respectively two characteristic experiments one with the conventional tobacco using the waterpipe, and
one experiment using the 3R4F reference cigarette. In (a), formulas are given in their detected ionic form (as an Hþ adduct) with
the charge symbol dropped to avoid clutter. The orange X markers are data from the tobacco, which had almost no major contri-
butions from N-containing molecules. Theþmarkers are from the cigarette experiment, where gray points are non-N organics and
green points are N-containing organics. The symbol sizes are scaled to the relative intensity of the peaks in the mass spectra, and
only peaks contributing at least 0.1% to the total signal were included. Vectors indicating shifts of CH2 addition and loss of H2O
are indicated with labeled bold arrows. In (b), the lines correspond to the region where cata-condensed (i.e., least compact) PAHs
with 0, 1 or 2 heterocyclic nitrogen respectively would appear. Thus, if a molecule falls in the line or is above the line, then it is
most likely a condensed-aromatic.
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with the view that a large component of the aerosol
was semi-volatile and was likely subjected to evapor-
ation and condensation. The observed homogeneous
nucleation of new particles in the hookah mainstream
smoke is also consistent with vapor condensation
playing a major role. In contrast, the cigarette smoke
ultrafine aerosol was much more chemically compli-
cated, with a wide range of oxidation states and
degrees of aromaticity (Figure 5b). The detected spe-
cies in the cigarette smoke had lower gas phase back-
grounds, suggesting that they were primarily low-
volatility species confined to the particles or that the
aerosol was more viscous and retained semivolatile
species more effectively than the hookah smoke. The
cigarette smoke ultrafine aerosol composition was
broadly consistent with that for other types of biomass
burning aerosol, for example showing homologous
series of heterocyclic reduced-nitrogen species, oxy-
genated aromatics, alkanoic acids, and polycyclic aro-
matic hydrocarbons (Laskin, Smith, and Laskin 2009).
The major differences between the hookah smoke and
cigarette smoke nanoparticles are likely due to the dif-
ference in the combustion and volatilization process,
involving much lower temperature for the waterpipe
than the cigarette (Shihadeh 2003).

4. Conclusions

The results presented in this study advance our
understanding of the properties and potential impacts
of hookah mainstream smoke. Major components of
the measured hookah smoke included glycerol and its
decomposition products, dehydrated sugars, and car-
bon monoxide. We observed large concentrations of
ultrafine particles (d <100 nm in diameter), especially
during the first 10min of the smoking session. It is
remarkable that the number of ultrafine particles
inhaled in a single puff of hookah mainstream smoke
is often equivalent to smoking more than one entire
cigarette. While the dose-response relationship for the
hookah smoke and cigarette smoke are likely to be
different (reflecting the different volume of main-
stream smoke inhaled by the smoker; 860mL for the
hookah vs 36mL for the cigarette), the large ultrafine
particle number concentration in the former is cause
for concern and highlights the potential danger of
regular waterpipe smoking.

The chemical composition of the hookah aerosol is
also remarkably different from that of a cigarette. The
former is dominated by the glycerol and its thermal
decomposition products in the gas phase, and by
sugar-related molecules in the particle phase. The

latter is far more complex reflecting the higher com-
bustion temperature in the cigarette, which generates
a huge diversity of toxic compounds, while the low
temperature waterpipe process and the practice of
adding sugared flavoring and glycerol results in par-
ticles that are less concentrated in many toxic com-
pounds. Nevertheless, aside from the significant
exposure to carbon monoxide, hookah mainstream
smoke is not without health hazard, considering the
presence of large amount of glycerol decomposition
products in the hookah mainstream smoke, such as
acrolein and acetaldehyde, and benzene. Previous
studies (Baker and Dixon 2006; Chaouachi 2009;
Moldoveannu, Coleman, and Wilkins 2007) showed
that the respiratory tract absorbs more than 90% of
the mainstream smoke inhaled carbonyl compounds,
which have been associated with severe irritations and
potential risks for cancer (Feng et al. 2006; IARC
1999). We must also point out that our work only
describes relative abundances of the measured chem-
ical compounds and does not quantify doses of spe-
cific hookah smoke toxic compounds, which may still
be present at levels relevant for human health.
Ongoing work using biological models will more dir-
ectly address health outcomes related to water-
pipe smoking.
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