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ORIGINAL ARTICLE

Does a local bystander effect necessitate a revision of TCP models that
are based on observed clinical data?

WOLFGANG A. TOMÉ1, JOHN D. FENWICK2 & SØREN M. BENTZEN1

1Department of Human Oncology, University of Wisconsin Medical School, Madison, WI 53792, USA, and 2Department of

Physics, Clatterbridge Centre for Oncology, Bebington, Wirral CH63 4JY, UK

Abstract
It is shown that in order to derive a general model for tumor control probability (TCP) the two assumptions that on the
microscopic level (1) clonogens are non-interacting and (2) clonogen killings are uncorrelated events are not necessary. In
fact, these two assumptions can be replaced with two weaker ones that only ask that (a) therapy fractions are independent
and non-overlapping and (b) the probability of an event only depends on the number of incidents happening during a time
interval and the length of this time interval but not on time itself. This change in assumptions implies that TCP models
based on clinical data are flexible enough to include interaction of clonogens on the microscopic level and therefore also a
possible bystander effect in cell killing. Based on this new set of assumptions the equation for TCP is derived, first for the
homogenous case and then for the general case of a heterogeneous ensemble of tumors irradiated inhomogeneously.

Several investigators have shown that cytoxic effects

can be induced in cells that are not directly traversed

by high or low LET ionizing radiation [cf. 1�5].

This has been termed the radiation-induced bystan-

der effect. On the one hand, Mothersill and collea-

gues [6] have stated that the existence of a bystander

effect following both alpha and gamma irradiation of

many cell lines is indisputable. While on the other

hand, they call attention to the fact that relevance of

this effect for radiation therapy requires its demon-

stration in-vivo [6]. Recently, Belyakov and collea-

gues [7] have described the bystander effect in a

three-dimensional, normal human tissue system and

have found that in this system unirradiated cells up

to 1 mm away from irradiated cells showed an

average increase in effect for micronuclei formation

of 1.7 times and for apoptosis of 2.8 times over

background. Nonetheless, in vitro experiments sug-

gest that bystander effects saturate above a threshold

dose of 0.05 Gy [8], i.e. doses of ionizing radiation

above this threshold dose do not induce a greater

bystander response. Consequently, the contribution

of the bystander effect to cell kill diminishes as the

dose increases [8]. Therefore, the contribution of the

bystander effect to cell kill after doses used in

fractionated radiation therapy is probably negligible.

For this reason, the radiation induced bystander

effect is usually emphasized in radiation protection

since it can potentially affect the shape of the dose

response curve in the low dose region (cf. Ref. [7]

and references therein).

While, the contribution of the radiation induced

bystander effect to cell kill in radiation therapy

remains to be determined its possible in vivo

existence (cf. Ref. [9]) violates the standard assump-

tions made in the derivation of models for estimating

TCP. In the derivations of models estimating TCP,

the following two assumptions have been made: That

clonogens are noninteracting and cell killings are

uncorrelated events. This leads one to the following

questions: Does the presence of a radiation induced

bystander effect mean that we have to alter our

current TCP models, since on the microscopic level

clonogens seem to be interacting and cell killings

seem to be correlated events? Or are these assump-

tions too strong, and can be relaxed or replaced by

much weaker ones in which on the microscopic level

clonogens can be interacting and cell killings can be

correlated events? In the following sections we

explore these two questions in detail and show that
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these two assumptions are not necessary in order to

derive a general model for tumor control probability

for an inhomogeneously irradiated tumor.

Modeling of Tumor Control Probability based

on clinical data

Various authors have proposed models that allow

one to estimate the tumor control probability (TCP)

for a tumor that is inhomogeneously irradiated (cf.

[10�19]). Model parameters are derived from clini-

cally observed control data obtained for uniformly

irradiated tumors. All of these models are implicitly

based on the following set of intrinsic assumptions

[cf. Ref. [20]]:

1. Each tumor consists of a number of non-

interacting clonogens;

2. Clonogen killings are uncorrelated events;

3. A tumor is controlled if all its clonogens are

inactivated (sterilized).

Clearly, if a bystander effect exists then on the

microscopic level assumptions (1) and (2) above

are in conflict with it, since this implies that

clonogens can interact and that clonogen killings

can be correlated events.

Since the bystander effect is in conflict with

assumption (1) and (2) above it is of interest if one

can find an expression for TCP using macroscopic

observable quantities that does not make explicit use

of these assumptions or at least only uses a set of

weaker assumptions that do not conflict with its

existence.

Following Lindley [21 p. 63�73], let us consider a

sample space in which each elementary event con-

sists of an infinite sequence of real numbers that is

strictly monotonically increasing. An elementary

event corresponds to the observation of a process

that begins at time t�/ 0 during which any number of

incidents can take place, where the nth incident

happens at time tn . Let t and h be such that 05/

t B/t�/h . Let F1 be the event that refers to the

number of clonogens surviving in the half open

time interval (0, t] after a treatment fraction has

been delivered. For any non-negative integer k, let F2

be the event of k clonogens surviving in the half open

time interval (t , t�/h] after another treatment frac-

tion has been delivered. We now make the following

two assumptions, first that the events F1 and F2 are

always independent, i.e. we assume that our system

is a purely random process and second that the

conditional probability p(F2½F1)�/p(F2) (since F1

and F2 are independent) only depends on h and k ,

but not on t . Hence, the process describing TCP is a

purely random stationary process, or a Poisson

process. Assumption (3) above, which is also

referred to as the clonogen hypothesis, then implies

that when describing TCP it is clearly the probability

of zero clonogens surviving that is of interest.

Therefore, if m is the average number of clonogens

expected to survive after all treatment fractions have

been delivered to an ensemble of identical tumors

then the probability of no clonogens surviving is

given by (cf. Theorem 2.3.1; Lindley [21]):

TCP�exp[�m]: (1)

In arriving at this operational definition of TCP

we have made no use of assumptions (1) and (2) but

have instead made use of the following two weaker

assumptions:

a. Therapy fractions are independent and non-

overlapping.

b. The probability of an event only depends on the

number of incidents happening during a time

interval and the length of this time interval but

not on time itself.

Clearly, these two assumptions are satisfied in the

case of fractionated radiation therapy since treat-

ment fractions are always separated by time intervals

that are large compared to the repair half times of

normal tissues to allow for almost complete repair of

sublethal damage in these normal tissues. Let n be

the number of fractions and d be the dose per

fraction for a given course of radiation therapy then

the average surviving number of clonogens including

proliferation is given by:

m�Nc

Yn

i�1

SFi(d) exp[l 1(T�Tk)(T �Tk)]:

In the expression above it is assumed that cell

proliferation behaves exponentially and that there is

no mitotic delay. Furthermore, SFi(d) denotes the

in-vivo surviving fraction of clonogens after the ith

fraction of dose d has been delivered. The prolifera-

tion term in the above expression contains the two

free parameters l and Tk as well as the covariate T,

which denotes the overall length of treatment in days

including weekends. Moreover, l denotes the pro-

liferation rate, which is defined as l�/ln(2)/Teff,

where Teff denotes the effective doubling time of

the clonogenic cells in days, and Tk denotes the kick

off time, which represents any delay in the start of

rapid clonogenic cell repopulation in response to

radiation treatment after the treatment has started.

Therefore, rapid repopulation of clonogenic cells

due to radiation treatment is assumed to start after a

lag period of Tk treatment days has passed. Withers

et al. [22] have observed that for Head and Neck

tumors this lag period is of the order of weeks, and
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therefore clearly exists for some tumor types (also cf.

Ref. [23]). Finally, 1(T�Tk) denotes the Heaviside

function, which is equal to zero if 05/TB/Tk and

equal to 1 if Tk 5/T. If there is no residual effect from

the bystander effect at the time when the next

fraction is delivered, i.e. if the cytoxins released by

a damaged cell have been washed out of the tumor

system then we can assume a constant effect per

fraction and the above expression then becomes:

m�Nc[SF(d)]n
exp[l 1(T �Tk)(T �Tk)]: (2)

One can think of a tumor as a macroscopic system

in the sense of statistical mechanics, whose response

to radiation can be described by measurable macro-

scopic quantities associated with the tumor, such as

the in-vivo surviving fraction of clonogens after dose

d , SF(d), the proliferation rate, l , and the kick-off

time Tk for rapid repopulation. Therefore, Equation

2 has to be understood as describing the macroscopic

observable effects of irradiating a tumor. However, the

actual underlying microscopic mechanism for cell

killing may be far more complicated and not be

describable by such a simple equation. In the stan-

dard Linear Quadratic model it is assumed that the

macroscopically observable in-vivo surviving fraction

of clonogens after a dose d can be described by:

SF(d)�exp

�
�ad

�
1�

d

a=b

��
(3)

Equation 2 can be rewritten to yield:

m�Nc exp

�
�and

�
1�

d

a=b

�
�l1(T �Tk)

� (T �Tk)

�
: (4)

This, of course, may no longer hold up in case of

bystander effects or low-dose hypersensitivities and

therefore, for the rest of this section we choose to work

with the more fundamental Equation 2. Still the a /b-

ratio may be introduced as an operational way of

adjusting for dose per fraction (cf. Refs. [24,25]).

Using Equation 2 the most basic equation for tumor

control probability, which applies to an ensemble of

similar homogeneous tumors of a certain type that is

irradiated homogeneously using n fractions of dose d ,

is given by the following expression:

TCP�exp[�Nc[SF(d)]n
exp[l1(T �Tk)

� (T�Tk)]] (5)

In Equation 5 all tumors in the ensemble are

assumed to be identical with respect to all parameters

such as clonogen number, radiation sensitivity, and

extent of hypoxia and are irradiated homogenously.

Let us now summarize the set of assumptions we have

used up to this point:

1. Therapy fractions are independent and non-

overlapping;

2. The probability of an event only depends on the

number of incidents happening during a time

interval and the length of this time interval but

not on time itself;

3. A tumor is controlled if all its clonogens are

inactivated (sterilized);

4. Clonogens within the tumor have the same

radiation sensitivity;

5. Tumors of patients in the population

under consideration have the same clonogen

sensitivity.

Clearly assumptions (4) and (5) are a gross over

simplification, and we will show in the following

section how one can dispense with the homogeneity

assumptions made above and derive a TCP model

for the general case of a heterogeneous ensemble of

similar tumors of the same type that is irradiated

using inhomogeneous dose distributions.

However, Equations 1�5 clearly show that in

order to estimate the TCP one has to estimate the

expected average number of clonogens that will

survive a given course of radiation therapy.

Tumor Control Probability of a heterogeneous

ensemble of similar tumors that is irradiated

using inhomogeneous dose distributions

In what follows, the abbreviation BNDVH denotes a

differential biologically normalized dose volume

histogram with M dose bins. The differential

BNDVH is obtained from a differential DVH by

normalizing the physical dose-per-fraction in each

bin to a reference dose-per-fraction (2 Gy here)

using the standard BED formalism (see Equation 9

below).

It has been clear for some time that distributions

of the macroscopic parameters defining resistance to

radiation treatment are necessary in calculations of

the probability of surviving cells in solid tumors,

instead of single well defined values of these para-

meters [26,27]. Moreover, evidence is mounting that

a major determinant of treatment outcome is the

radiation sensitivity, a , and its associated variance,

and therefore the surviving fraction of cells after a

2 Gy fraction, SF2, and its associated variance

[26�31]. Buffa et al. [31] have suggested by fitting

laboratory-measured data from human tumor biop-

sies that SF2 should be log-normally distributed. In

what follows we assume that the in-vivo SF2 is also

log-normally distributed. Working with a log-normal

distribution for the in-vivo SF2 has the operational

advantage that one is dealing with a positive-definite
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probability distribution, which does not have to be

truncated at zero.

Thus let us denote by ln(hSFpop
2 i) and sg

pop the

central value and geometric standard deviation of the

log-normally distributed population in-vivo SFpop
2 of

an ensemble of similar tumors of a certain type.

Furthermore, we denote by ln(hSFind
2 i) and sg

ind the

central value and geometric standard deviation of the

log-normally distributed individual in-vivo SFind
2 of

an individual tumor within this ensemble of similar

tumors. With this notation let us define the following

two log-normal probability distributions:

fpop(hSFind
2 i; hSFpop

2 i;sg
pop)�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(sg

pop)
2

q

� 1

hSFind
2 i

exp �
ln2(hSFind

2 i=hSFpop
2 i)

2(sg
pop)

2

$ %
; (6)

find(SFind
2 ; hSFind

2 i;sg
ind)�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p(sg

ind)2
q

� 1

SFind
2

exp �
ln2(SFind

2 =hSFind
2 i)

2(sg
ind)2

$ %
: (7)

Suit et al. [17] have observed that heterogeneity of

radiation response of human tumors of the same

type clearly exists and that major parameters include

the histopathologic type, clonogen number, hemo-

globin concentration, cell proliferation kinetics, ex-

tent of hypoxia, and immune rejection by the human

host. Here, we regard SF2 as the in-vivo net result of

a single 2 Gy fraction and for this reason we assume

that heterogeneity of response to radiation of tumors

can be described using the single log-normally

distributed parameter. Then the log-normal distri-

bution fpop in Equation 6 describes the variation of

the surviving fraction of clonogens, hSFind
2 i, from

patient to patient in a population of patients having

similar tumors of a certain type. On the other hand

the log-normal distribution find in Equation 7

describes the variation of clonogen surviving frac-

tion, SFind
2 within an individual tumor. The expected

TCP for an inhomogeneously irradiated tumor

within an ensemble of similar tumors is given by

averaging the individual tumor control probability,

TCPind , over the between-tumor log-normal distribu-

tion fpop :

TCP�g dhSFind
2 ifpop(hSFind

2 i; hSFpop
2 i;sg

pop)

�TCPind(hSFind
2 i): (8)

Therefore, we now only need to find an expression

for TCPind . In what follows let us for a given

differential BNDVH denote by bndj
i the biologically

normalized dose (to 2 Gy per fraction) for the i-th

dose bin at the j-th fraction, which is given by:

bndj
i �dj

i

a=b� dj
i

a=b� 2
: (9)

To reiterate, in our modeling we regard the in-vivo

SF2 and the a /b-ratio as macroscopic variables in

the sense of statistical mechanics that have been

derived from clinical data describing the macrosco-

pically measurable response of a tumor system to

radiation.

TCPind in Equation 8 represents the tumor

control probability of an individual tumor in the

entire ensemble of similar tumors of a certain type

that are inhomogeneously irradiated. Note that in

order to estimate TCPind we only need to find an

expression for the expected average number of

surviving clonogens (cf. Equation 1) when an

individual tumor in the entire ensemble of similar

tumors of a certain type is inhomogeneously

irradiated. For the ith dose bin the expected surviv-

ing fraction taking repopulation into account is given

by:

SF(Di)�
Yn

j�1

SF(dj
i )exp[l1(T �Tk)(T �Tk)];

Here, Di , denotes the total dose in the ith dose bin, di
j

denotes the dose per fraction in the ith dose bin, and

n denotes the number of fractions in the treatment

course. Now using Equations 3 and 9 above it is then

straightforward to show that for the ith dose bin the

expected surviving fraction of clonogens is given by

(cf. [32]).

SF(Di)�(SFind
2 )

0:5
Pn

j¼1

�
bndj

i
�l1(T�Tk)(T�Tk)

��
na

�
1�2

�
a=b

� � �

(10)

Therefore, the average number of surviving clono-

gens after the inhomogeneous dose distribution

represented by the BNDVH has been delivered for

a given fractionation schedule including proliferation

is given by:

m�Nc

XM

i�1

�
nig dSFind

2 find(SFind
2 ; hSFind

2 i;sg
ind)SF(Di)

�
;

(11)

The sum in Equation 11 is computed over the M

dose bins in the differential BNDVH, Nc is number

of initial clonogens, ni is the fractional volume

corresponding to the ith dose bin Di . Therefore,

inserting Equations 10 and 11 into 1 we find for

TCPind the following expression:

TCPind(hSFind
2 i)�exp


�Nc

XM

i�1

�
nig dSFind

2 find

�(SFind
2 ; hSFind

2 i;sg
ind)SF(Di)

��
: (12)
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Equation 12 is the generalization of Equation 5 to

the general case of an inhomogeneously irradiated

heterogeneous ensemble of tumors of a certain type.

Once SF2, TCD50, and the relative slope g50�/D

dTCP /dD ½TCD50
of the TCP-response curve are

specified, the consequential variance of SF2 and

the number of clonogens, Nc , for the specified tumor

system can be estimated, cf. [16,33]. Therefore,

looking at Equations 10 and 12 one can see that in

order to use this TCP model one only needs to know

the macroscopic parameters SF2, TCD50, g50, Tk ,

Teff which can be found from clinical data. Of course

this clinical data will have the consequences on cell

kill due to the bystander effect built in. Therefore,

Equations 8 and 12 represent a model for the

calculation of tumor control probability that is based

on macroscopic variables, which applies to the

general case when one is considering a heteroge-

neous ensemble of similar tumors of the same type

inhomogeneously irradiated.

Conclusions

In this work we have shown that the two assumptions

that a tumor on the microscopic level consists of

non-interacting clonogens and that clonogen killings

are uncorrelated events are not necessary in order to

derive a general model for tumor control probability.

In fact these two assumptions can be replaced with

the following two weaker macroscopic assumptions,

namely that (a) therapy fractions are independent

and non-overlapping and (b) the probability of an

event only depends on the number of incidents

happening during a time interval and the length of

this time interval but not on time itself. This implies

that TCP models based on this new set of assump-

tions are flexible enough to include interactions of

clonogens on the microscopic level, and therefore a

bystander effect in cell kill.

Therefore, with the interpretation that clinically

observed quantities describing tumor response to

radiation are macroscopic variables in the sense of

statistical mechanics and the use of the fact that the

stochastic process describing clonogen survival

on the macroscopic level is a purely random stationary

process, the interaction of clonogens and the

bystander effect on cell killing at the microscopic level

is already taken into account in a TCP model based

on clinical data. In other words, such TCP models

describe the macroscopic observable response of

tumor systems to a cytoxic agent such as radiation

in terms of a limited number of macroscopic obser-

vable quantities such as SF2, g50, TCD50, l , and

Tk and that the simple phenomenological relation-

ships between these variables may not model any

of the microscopic biological processes involved in

cell killing.

However, this does not mean that the radiation

induced bystander effect is unimportant. On the

contrary, the bystander effect may well be very

important in the modeling of normal tissue compli-

cation probability, since it implies that a low dose of

radiation to a large volume is probably far more toxic

to a biological system in terms of late normal tissue

damage and induction of secondary cancers than a

high dose to a limited volume of normal tissue. This

is especially important when one considers dose

distributions obtained using intensity modulated

radiotherapy, where the low dose contribution from

a large number of coplanar beams placed isotropi-

cally around the patient is smeared out over a larger

volume of normal tissue as compared to more

conventional field arrangements. Possible ways out

of this conundrum should it prove to be clinically

relevant would be the use of non-coplanar field

arrangements in which each beam has a unique

exit and entrance pathway. Such field arrangements

yield dose distributions that are highly conformal

and have steep dose gradients [34,35].
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