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REVIEW ARTICLE

The GLP-1 system as a therapeutic target

C. MARK B. EDWARDS

Diabeticare, The Hillingdon Hospital, Uxbridge, Middlesex, UK

Abstract
Glucagon-like peptide-1 (GLP-1) was first isolated and sequenced twenty years ago. It has been shown to have many effects
in man. GLP-1 stimulates insulin secretion, delays gastric emptying, decreases glucagon levels and reduces appetite, all
resulting in a fall in plasma glucose concentrations. More recently, evidence suggests it can stimulate beta cell neogenesis
and improve cardiovascular function, and may even be neuroprotective. It is no surprise that this peptide is of increasing
interest as a target for the treatment of diabetes. None of the drugs currently available for diabetes are able to achieve targets
in all patients and none of them are without side effects. The multiple modes of action of GLP-1 together with its low
propensity for hypoglycaemia appear to give it advantages over currently available treatment modalities. In this review I shall
examine the data suggesting that medications modelled on the GLP-1 system may provide a new therapeutic option for
diabetes in the future.

Key words: Dipeptidyl peptidase IV, exendin-4, gastric emptying, glucagon, glucagon-like peptide-1, hypoglycaemia,
incretin, insulinotropic, LAF237, liraglutide

Introduction

It is 90 years since Moore et al. first demonstrated

that a substance extracted from the mucosa of the

gastrointestinal tract could treat diabetes (1). In

1929 Zunz and La Barre named a substance

proposed to be released from the gut in response

to nutrient ingestion that stimulates insulin secretion

‘incretin’ (2). It was not until just over 40 years ago

that it was demonstrated that oral ingestion of

glucose produced higher insulin levels than intrave-

nous infusion of an equivalent dose of glucose (3). It

has since been shown that the incretin effect is

responsible for at least 50% of meal-induced insulin

release in man (4). The incretin effect was defined

by Creutzfeldt, who suggested the presence of more

than one factor (5). The sequence of glucagon-like

peptide-1 [GLP-1] in man was first published in

1983 (6). It is highly conserved in all species

implying an important function (7). A number of

studies indicated that GLP-1 is the most potent

naturally occurring incretin in man (8–9), and has a

physiological role in the regulation of postprandial

glucose (10).

Actions of GLP-1

Regulation of carbohydrate metabolism

GLP-1 not only stimulates insulin secretion (insuli-

notropic), but has several other actions which

coordinate to reduce plasma glucose. GLP-1 stimu-

lates insulin synthesis (11), and it appears to increase

islet cell mass (12), though the mechanism through

which this occurs is poorly characterized (13). It also

inhibits islet apoptosis (14). Type-2 diabetes is

associated with a progressive decline in beta cell

function (15), thus, up-regulation of the GLP-1 axis

may even slow the progression of diabetes.

GLP-1 reduces glucagon (8,16), which opposes

the action of insulin. As the major role of glucagon is

in the fasted state (17), and levels in diabetes are

high (18), antagonism via the GLP-1 system would

be expected to be particularly important in control-

ling fasting glucose in diabetes. It also reduces

glucose by delaying gastric emptying (19–21), and

inhibits gastric acid secretion (19). Administration of

GLP-1 with a meal in healthy humans causes a

reduction in meal-related glucose and insulin excur-

sions, implying that delay in gastric emptying is more
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important than its insulinotropic effect (20). GLP-1

reduces food intake and act as a satiety factor in rats

(22), it can also cause weight loss (23). Further data

indicate that it can reduce food intake in man

(21,24,25), also likely to help ameliorate diabetes.

A further advantage of GLP-1 as a potential agent

to treat diabetes would be if it enhanced glucose

disposal independent of insulin. This was suggested

(17,26), but most studies have failed to reproduce it

(27,28), and the effect remains controversial. GLP-1

is glucose-dependent (29), thus, it reduces glucose

to a greater extent in the hyper- than the normogly-

caemic state (30). This fact was used to infer that it

does not cause fasting hypoglycaemia. In some

studies this is the case (31,32), whereas in others

hypoglycaemia can occur (30,33–35), however,

apparently only in normal volunteers, not people

with type 2 diabetes. Overall it seems that ther-

apeutic agents for type-2 diabetes based on GLP-1

will cause little hypoglycaemia, giving it major

advantage over insulin or sulphonylureas (36).

Cardiovascular action

GLP-1 has cardiovascular actions though these vary

between species. In the rat it increased heart rate and

blood pressure (37). In a rat model of hypertension,

GLP-1 reduced blood pressure, seemingly via a

natriuretic and diuretic action (38). GLP-1 receptor

knockout mice have reduced heart rate and

increased left ventricular wall thickness (39), con-

sistent with a physiological role in cardiovascular

metabolism. In the calf, it is chronotropic without

effect on blood pressure (40). In the dog it appeared

to enhance recovery from ischaemic myocardial

stunning (41).

Cardiovascular effects of GLP-1 in man also vary.

Subcutaneous (s/c) injections in healthy volunteers

increased blood pressure (34), whereas continuous s/

c infusion tended to lower it (33). GLP-1 infusion

improved endothelial function in patients with stable

coronary artery disease whilst having no effect in

normal subjects (42). Intravenous (iv) GLP-1

improved left ventricular function in patients with

severe heart failure after large myocardial infarction

and successful primary angioplasty (43). Given the

frequency of endothelial dysfunction in diabetes, it

may have beneficial effects long-term, and may have

a short-term role in certain high risk patients.

Action on sodium and water balance

Peripheral administration of GLP-1 inhibited water

intake in the rat (44). This effect was abolished by

destruction of the arcuate nucleus and circumven-

tricular organs (45). The area postrema forms part

of the circumventricular organs and peripheral

administration activates this area (46), implying

peripheral GLP-1 may be acting centrally. It also

acts as a natriuretic and diuretic in the hypertensive

rat (38).

As well as a reduction in food intake with GLP-1

administration, a decrease in water intake in healthy

volunteers (47) and people with type-2 diabetes (25)

has been found. It is natriuretic in healthy human

subjects and patients with insulin resistance, sug-

gesting a possible renoprotective effect (48).

Neurological function

GLP-1 may also be neuroprotective. It reduced

apoptosis in models of neurodegeneration, (49) and

reduced levels of amyloid (50). It improved spatial

learning in rats and restored a learning deficit in

GLP-1 knockout mice: indeed receptor overexpres-

sion improved learning and memory (51). There are

no human data reported, however, a beneficial role

in Alzheimer’s disease has been proposed (50).

Therapeutic principle of GLP-1

GLP-1 is rapidly broken down by dipeptidyl

peptidase IV (DPP-IV). The plasma half-life in

man is 1–3 minutes (52). Nevertheless, exogenous

GLP-1 can reduce plasma glucose in type-2 diabetes

(16,53,9). This has been confirmed using s/c

injections (54), buccal tablets (55), and s/c infusion

(56–59), with additional effect over metformin (56)

and glitazones (59). All these studies verified that the

GLP-1 system is a target for therapy of type-2

diabetes, alone or in combination providing impetus

to the search for a long-acting analogue.

Key messages

N Current therapeutic strategies for type-2

diabetes are inadequate, the disease is

rapidly increasing in prevalence and new

and better drugs are urgently needed.

N GLP-1 increases plasma insulin, decreases

glucagon, delays gastric emptying and

reduces appetite whilst causing little or no

hypoglycaemia.

N Long-acting GLP-1 analogues resistant to

breakdown by dipeptidyl peptidase IV and

antagonists of this enzyme are potentially

advantageous treatments for diabetes.
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GLP-1 analogues

Exendin-4

Exendin-4, isolated from the salivary gland of the Gila

monster, is a long acting GLP-1 receptor agonist (60).

The half-life of this peptide in man is about 30

minutes (61), making it a superior prospect to GLP-1

as an anti-diabetic agent. Exendin-4 has a longer

lasting and more potent glucose-lowering effect than

GLP-1 in diabetic mice (62), rats and monkeys (63).

It stimulates beta cell replication and islet neogenesis

(64,65) improving glucose tolerance (65), and reduces

weight gain in rats (66). Exendin-4 also mimics the

neuroprotective effects of GLP-1 (49).

Intravenous infusion of exendin-4 in healthy

humans reduced fasting and postprandial glucose,

as well as reducing food intake by 19% (61). The

dose used in this study may have been close to the

maximal tolerated as double this dose caused nausea

in some subjects (61). A hyperglycaemic clamp was

used to show that iv exendin-4 is a potent

insulinotropic agent in type-2 diabetes, with a long

duration of action (67). Subcutaneous exendin-4

caused complete abolition of postprandial glycaemia

in people with type-2 diabetes, plasma glucose

dropping or at least failing to rise after a meal in

the active group, associated with a potent slowing of

gastric emptying (68). However, a number of

subjects suffered nausea and/or vomiting. A reduc-

tion of fasting glucose was also noted, though no one

was hypoglycaemic (68). Subcutaneous exendin-4

also reduced postprandial hyperglycaemia in type-1

diabetes by 90%, via inhibition of gastric emptying

and glucagon suppression (69).

Twice-daily s/c exendin-4 injections for a month

in people with type-2 diabetes caused long-term

glycaemic control, as measured by glycosylated

haemoglobin (HbA1c), to improve by 0.8% (70).

There were no significant side-effects, aside from

short-lasting nausea at the start of the study with two

subjects. There was no hypoglycaemia with the

lowest blood glucose being 3.3 mmol/l, but there

was no weight loss. Improvement in glycaemic

control did not occur for 24 hours, and the authors

concluded that exendin-4 in this dose/form would be

unlikely to be a treatment for type-2 diabetes (70).

Data from Amylin Pharmaceuticals illustrated its

effects combined with metformin and/or sulphony-

lureas (71). Over half the patients were on combined

medication. ‘Triple’ therapy with two or three times

a day s/c exendin-4 reduced HbA1c 0.9% in one

month, compared with 0.3% in the placebo group.

HbA1c indicates average plasma glucose over three

months, thus longer trials should have a greater

effect. Mild hypoglycaemia did occur, although only

in combination with a sulphonylurea: nausea also

occurred causing a dropout rate of 3.7% (71). A

recent report showed that the nausea caused by

exendin-4 can be reduced by dose titration (72).

The first study of exendin-4 for longer than one

month has recently been reported by Amylin (73).

Patients taking sulphonylureas were randomized to

one of two doses of s/c exendin-4 twice a day or

placebo for six months. HbA1c decreased by 0.98%

with 10 mcg and 0.57% with 5 mcg compared to

placebo, the effect was greater in more poorly

controlled patients (1.35 and 0.71 respectively if

HbA1cw9%). Study withdrawal was 20%–30% in

the treatment arms, and 40% in the placebo arm.

The latter was partly due to worse glycaemic control

as per the protocol, which is likely to have caused a

reduction in the measured treatment effect com-

pared with the actual effect. Adverse events causing

withdrawal were 3.3% for placebo, 7.2% for low

dose and 10.1% for high dose exendin-4. There was

a small weight loss of 1.6 kg over the study period in

the high dose group; the placebo group lost 0.6 kg;

and reported nausea and hypoglycaemia were more

common in the treatment groups (73). The improve-

ment in glycaemic control is not unlike that for

agents currently used in type-2 diabetes. Data

looking at its effects in combination with metformin

or with sulphonylureas and metformin have been

presented in abstract form.

In 2002 Eli Lilly went into partnership with

Amylin to develop exendin-4, also known as exena-

tide. The peptide currently has more published

human data than any other targeting the GLP-1

receptor. A long acting formulation designed for use

once a week to once a month is in clinical trials, but

no more information is currently available.

Liraglutide

The other GLP-1 agonist with considerable pub-

lished data is the Novo Nordisk product liraglutide.

This is an acylated derivative of GLP-1 that binds to

albumin and is resistant to DPP-IV degradation

(74). Subcutaneous injection of liraglutide in rats

caused weight loss for ten days (75). It attenuated

diabetes in two models of pre-diabetes, at least partly

via reduction in food intake (76), and induced a

short term increase in beta cell mass in normal rats

(77). Liraglutide reduced glucose in diabetic ob/ob

and db/db mice, also increasing beta cell mass in the

latter (78). In pigs, it improved glycaemic control

chronically, it stimulated insulin, decreased gluca-

gon levels and delayed gastric emptying (79).

The half-life of liraglutide in man is 11–15 hours

(80). Injection into people with type-2 diabetes
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reduced fasting glucose, and postprandial glucose

via stimulation of insulin, reduction of glucagon and

delay in gastric emptying (81). Subcutaneous

liraglutide once daily for a week in people with

type-2 diabetes caused a decrease in average plasma

glucose of 2 mmol/L and postprandial glucose after

meals of 20 per cent (82). Insulin levels were

unchanged, though in the presence of reduced

plasma glucose this suggests a relative insulinotropic

effect, as has been described with GLP-1 (83). It

decreased plasma glucagon and glycogenolysis,

improved islet cell function and first phase insulin

response, but did not affect gastric emptying (82).

There was no hypoglycaemia but nausea and

abdominal pain were experienced by some.

An eight-week study of once daily s/c liraglutide

reduced HbA1c by 0.8% compared with placebo,

with no change in gastric emptying, body weight or

energy expenditure (84). Side-effects of medication

were minor. These latter two studies (82,84) used a

lower dose of liraglutide than that of the previous

(81) and it seems likely at higher doses that

liraglutide does delay gastric emptying.

Administration of liraglutide for 12 weeks caused

a decrease in HbA1c of 0.75% with the highest dose

(85). There was a tendency for weight loss, with one

dose causing significant weight loss of 1.2 kg

compared with placebo. There was minor nausea

with increase in dose, but no patients withdrew from

the study (85). Acute studies in man using GLP-1

and its agonists have generally shown a decrease in

food intake and even weight loss (21,24,25,47,61),

however, the chronic effects are much less impress-

ive. Weight loss of 1 kg versus placebo was found

with exenatide administered for six months (73) and

1.2 kg with one dose of liraglutide for three months

(85). I suspect, given the number of studies showing

decreased food intake without nausea, that the

weight loss is a direct effect, at least at certain doses;

however, the metabolic significance may be minor,

and dosage is obviously critical. Nevertheless, for

prescribers and patients alike the fact that a GLP-1-

based drug is likely to cause weight loss, however

minimal, compared with the well recognized weight

gain of insulin and sulphonylureas and the weight

stabilization of metformin (86) will be crucial in the

ability of these drugs to compete in the pharmaceu-

tical market.

Other GLP-1 agonists

Various strategies have been used to protect GLP-1

from breakdown by DPP-IV and thus increase the

half-life. Acylation or modification of one of the first

three amino acids of GLP-1 (7-36 amide) has been

most commonly investigated (87). Conjuchem have

patented a modified GLP-1, which binds to albumin

called CJC-1131, this is currently in phase II clinical

trials (88). Human Genome Sciences have a similar

albumin-bound peptide, Albugon, which has been

shown to have a prolonged action in mice (89).

DPP-IV antagonists

An alternative strategy to target the GLP-1 system,

rather than creating DPP-IV resistant analogues, is

to inhibit the enzyme itself. DPP-IV knockout mice

have reduced glycaemic excursion after a glucose

challenge (90) and are protected from both obesity

and insulin resistance, implying DPP-IV antagonists

are a therapeutic option (91). The enzyme not only

inactivates GLP-1, but also glucose-dependent

insulinotropic peptide (GIP) (92). Knockout of both

the GLP-1 and GIP receptors in a mouse model

caused increased glycaemic excursion in response to

oral glucose, it also did not respond to DPP-IV

inhibition implying that GLP-1 and GIP account for

most of the incretin action regulated by DPP-IV

(93).

However, a note of caution must be sounded in

that DPP-IV, also known as CD26, has many

actions. Not only does it have many peptide

hormones as substrates, it also stimulates T-cell

proliferation as well as inactivating cytokines such as

tumour necrosis factor-alpha (TNF-a) (94). Activity

of the enzyme alters in a number of disease states, in

particular dropping in depression (95). DPP-IV

structure is highly conserved in evolution like

GLP-1, implying an important physiological role

(96) and long-term blockade may have predictable

or hitherto unpredictable side-effects (97).

Despite the above, a number of oral DPP-IV

inhibitors have been tested in animals, particularly

glucose intolerant models, and in man. Several acute

studies have been reported: less data are available on

the chronic use of DPP-IV antagonists. The

Novartis compound DPP728 given long-term to

mice improved glucose tolerance with increase in

insulin levels (98). The Ferring compound FE

999011 improved glycaemia and delayed the onset

of diabetes in Zucker fatty rats (99). Chronic

administration of the Probiodrug P32/98 improved

glycaemia in Zucker rats (100).

DPP728 has also been shown to be active in

people with diet-controlled type-2 diabetes (101).

Two or three times a day oral therapy improved

average plasma glucose by 1 mmol/L after four

weeks compared with placebo, there was no change

in body weight. Tablets were taken ten minutes

before food, and were generally well tolerated, the

GLP-1 as a therapeutic target 317



incidence of hypoglycaemia and gastrointestinal

side-effects was low, though one patient did develop

transient nephrotic syndrome (101).

LAF237 (Vildagliptin)

Novartis have published no further data on DPP728,

and have concentrated on the longer acting DPP-IV

inhibitor LAF237, also known as vildagliptin.

Administration once a day thirty minutes before

breakfast for four weeks in people with type-2

diabetes decreased plasma glucose 1 mmol/L.

There was little effect on insulin, but glucagon was

inhibited. No significant side effects were noted, and

there was no change in body weight (102). This

group has gone on to perform a longer-term study of

vildagliptin in patients treated with metformin

(103). After 12 weeks HbA1c dropped 0.7%

compared with placebo, after 1 year it was 1.1% in

the 58 out of the original 107 patients who

continued. Diabetic control at the start of the study

was moderate (HbA1c 7.7 or 7.8). There was

reduced fasting glucose and glucose area under the

curve (AUC) in response to a test meal with

vildagliptin, insulin AUC was unchanged indicating

a relative insulinotropic effect. No effect on body

weight was found and there was a low incidence of

hypoglycaemia (103). Three of 42 patients treated

with vildagliptin for a year required an increase in

their anti-hypertensives; the cause of this is

unknown, though this would be consistent with the

increase in blood pressure previously found with

GLP-1 (34).

Conclusion

Much data has been published on GLP-1 and its

agonists in rats and other species. Potentially

important theories have been proposed regarding

increase in islet cell mass induced by GLP-1, slowing

of the progression of diabetes or delay in its onset

with GLP-1 and its agonists and even a neuropro-

tective role. However, these have all just been

demonstrated in animals, and are only inferred and

have not been reported in man. Nevertheless, several

reports have been published in man regarding three

first-generation agents targeting the GLP-1 system.

Exenatide reduces HbA1c and probably causes some

weight loss, it produces little hypoglycaemia, though

it has to be injected twice a day, and nausea is likely

to limit its usefulness in some. There is a hint of a

much longer-acting exendin-like molecule. Less data

are available for liraglutide, which seems to have

similar efficacy and also may cause some weight loss.

It only has to be injected once a day. Vildagliptin is

the only oral compound available. It has similar anti-

hyperglycaemic effect to the other two but without

causing weight loss. We await evidence to suggest

whether the less specific DPP-IV antagonism is of

long-term advantage or harm.

Currently, the major compounds used in the

treatment of type-2 diabetes are metformin, which

is not tolerated by many and contra-indicated in

many more, sulphonylureas, which cause weight

gain and hypoglycaemia, and thiazolidinediones,

which appear less efficacious than the others, cause

weight gain and have less long-term data. The

alternative is insulin; however, the necessary multi-

ple injections are disliked by patients, and weight

gain and hypoglycaemia remain problematic. The

prevalence of obesity and thence type-2 diabetes is

increasing rapidly. There is an urgent need for newer

drugs that have the activity profile of agents acting

on the GLP-1 system: soon we will see whether any

of the agents above fit the bill. Excitingly, we have

early evidence suggesting the possibility of advantage

in the long term, ranging from cardiovascular to

neurological protection, features that would make

such drugs even more attractive for the long-term

treatment of type-2 diabetes.
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