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REVIEW ARTICLE

Unraveling the complex genetics of familial combined hyperlipidemia

ELINA SUVIOLAHTI1, HEIDI E. LILJA2 & PÄIVI PAJUKANTA1

1Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, USA,

and 2Department of Surgery, Meilahti Hospital, University of Helsinki, Helsinki, Finland

Abstract
Familial combined hyperlipidemia (FCHL) constitutes a substantial risk factor for atherosclerosis since it is observed in
about 20% of coronary heart disease (CHD) patients under 60 years. FCHL, characterized by elevated levels of total
cholesterol (TC) and triglycerides (TGs), or both, is also one of the most common familial hyperlipidemias with a
prevalence of 1%–6% in Western populations. Numerous studies have been performed to identify genes contributing to
FCHL. The recent linkage and association studies and their replications are beginning to elucidate the genetic variations
underlying the susceptibility to FCHL. Three chromosomal regions on 1q21–23, 11p and 16q22–24.1 have been replicated
in different study samples, offering targets for gene hunting. In addition, several candidate gene studies have replicated the
influence of the lipoprotein lipase (LPL) gene and apolipoprotein A1/C3/A4/A5 (APOA1/C3/A4/A5) gene cluster in FCHL.
Recently, the linked region on chromosome 1q21 was successfully fine-mapped and the upstream transcription factor 1
(USF1) gene identified as the underlying gene for FCHL. This finding has now been replicated in independent FCHL
samples. However, the total number of variants, the risk related to each variant and their relative contributions to the disease
susceptibility are not known yet.

Key words: Association study, complex disease, coronary heart disease (CHD), familial combined hyperlipidemia (FCHL),
genetics, linkage study

Introduction

Familial combined hyperlipidemia (FCHL), first

described among young survivors of myocardial

infarction in 1973 (1–3), is the most common

familial dyslipidemia predisposing to coronary heart

disease (CHD). FCHL is a common disease with an

estimated population prevalence of 1%–6% (3,4).

Elevated levels of serum total cholesterol (TC),

triglycerides (TGs), or both characterize the FCHL

disorder. FCHL also features low levels of high-

density lipoprotein cholesterol (HDL-C), elevated

levels of serum apolipoprotein B (apoB), and glucose

intolerance as component traits (2,3,5).

It has been evident for 30 years that FCHL has a

strong genetic component (2,3,6). The genetic

component in FCHL has been suggested by familial

aggregation of dyslipidemia (2) and in fact, FCHL

was originally suggested to be inherited as an

autosomal dominant disorder due to the vertical

transmission pattern (1). A more complex polygenic

background is, however, likely, as suggested by

metabolic (7) and segregation studies (8,9).

Furthermore, whole-genome searches and candidate

gene studies performed in FCHL families originat-

ing from different populations have identified several

putative loci for FCHL (10–16). The recent findings

and replications of the linkage and association

studies are beginning to identify the DNA sequence

variations contributing to FCHL. Fine-mapping of

one of the linked regions recently resulted in the

characterization of the first positionally cloned gene

for FCHL, upstream transcription factor 1 (USF1)

(17). Since USF1 is a transcription factor known to

regulate the expression of a number of genes

participating in glucose and lipid metabolism, it

provides an excellent candidate for FCHL. A recent

study also indicates that common variants and

haplotypes in the hepatic nuclear factor 4 alpha

(HNF4A) gene are associated with high serum lipid
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levels and the metabolic syndrome in FCHL families

(18). Interestingly, cooperative effects of USF1 and

HNF4A have been suggested to control the regula-

tion of multiple genes, including apolipoprotein A2

(APOA2) and apolipoprotein C3 (APOC3) (19–21).

Interactions between DNA sequence variants are

likely to contribute to the complex pathogenic

mechanism(s) of common cardiovascular traits,

raising the possibility that variants in USF1,

HNF4A and apolipoproteins may interactively con-

fer susceptibility to FCHL. To summarize, these

accumulating data indicate that multiple variants

contribute to the susceptibility to FCHL.

Both rare and common variants have been

suggested to contribute for example to low plasma

levels of HDL-C in the general population (22,23).

However, the extent to which each group influences

this susceptibility is not known. It is thus likely that

multiple DNA sequence variants, both common and

rare, underlie the genetic susceptibility to FCHL. In

addition to the human DNA sequence and variation

data produced by the Human Genome Project and

the HapMap Project, recent advances in genotyping

technologies and statistical approaches should

enable an accelerated investigation of the sequence

variations at the genomic level to identify all the

variants involved in the disease susceptibility of

FCHL.

Genes conferring the susceptibility to FCHL

USF1 identified as the gene underlying the linkage signal

on chromosome 1q21

Previously a locus for FCHL was identified on

human chromosome 1q21–q23 in FCHL families

originating from the genetically relatively isolated

population of Finland (10). Since then, this finding

has been replicated in several FCHL samples,

originating from other, more heterogeneous popula-

tions (15,24–26). Linkage has been observed to

FCHL, as well as to several FCHL component

traits, including TG, TC and apoB levels

(10,15,25,26). On 1q21 no significant evidence of

genetic heterogeneity was observed in the Finns

(17). However, in Mexican, German and Chinese

samples the proportion of families contributing to

linkage ranged from 22% to 71% (24,26).

Interestingly, the same markers in the 1q21 region

have also been linked to type 2 diabetes mellitus

(T2DM) in numerous studies (27–33). Most

recently, 1q23–31 was also shown to be linked to

the metabolic syndrome (34). The evidence for

linkage obtained for 1q21 has varied in these FCHL

and T2DM studies, most likely reflecting the

underlying genetic heterogeneity, as well as popula-

tion-based and diagnostic differences. Interestingly,

many of the critical metabolic features of FCHL, e.g.

hypertriglyceridemia and insulin resistance, also

represent trait components of T2DM. Taken

together, these linkage findings suggest that one or

Abbreviations

APOA1 apolipoprotein A1

APOA2 apolipoprotein A2

APOA5 apolipoprotein A5

APOB apolipoprotein B

APOC3 apolipoprotein C3

APOE apolipoprotein E

APOA1/

C3/A4/A5 apolipoprotein A1/C3/A4/A5

CHD coronary heart disease

FCHL familial combined hyperlipidemia

HDL-C high-density lipoprotein

cholesterol

HNF4A hepatic nuclear factor 4 alpha

LD linkage disequilibrium

LDL-C low-density lipoprotein

cholesterol

LEPR leptin receptor

LIPC hepatic lipase

LPL lipoprotein lipase

SNP single nucleotide polymorphism

TC total cholesterol

TG triglycerides

TNFRSF1B tumor necrosis factor receptor

superfamily, member 1B

TXNIP thioredoxin interacting protein

T2DM type 2 diabetes mellitus

USF1 upstream transcription factor 1

Key messages

N Familial combined hyperlipidemia (FCHL)

is a common complex disorder with both

genetic and environmental factors affecting

the disease susceptibility.

N Most likely the genetic susceptibility to

FCHL is determined by multiple DNA

sequence variants and their interactions.

N This review focuses on the recent findings

that are beginning to elucidate the FCHL

susceptibility genes, including the upstream

transcription factor 1 (USF1) and

lipoprotein lipase (LPL) genes, as well as

the apolipoprotein A1/C3/A4/A5 (APOA1/

C3/A4/A5) gene cluster.
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more genes in this particular chromosomal region

predispose to both FCHL and T2DM, two clinical

phenotypes with overlapping component traits and

shared diagnostic features.

The upstream transcription factor 1 (USF1) was

recently linked and associated with FCHL in 60

extended Finnish FCHL families with 721 geno-

typed individuals (P50.00002) (17). The evidence

for association was strongest among males for high

serum TGs (P50.0000009) and extended to a ,46-

kb region, containing also the adjacent F11 receptor

(F11R) gene (17) (Figure 1). An association was

also observed for apoB, TC and the LDL peak

particle size (17). The known functions of F11R,

related to regulation of tight junction assembly in

epithelia, pathogenesis of viral infections, and

transendothelial migration of certain T cell types

(35–37), make it a less likely candidate gene for

FCHL than USF1. USF1 is a ubiquitously expressed

transcription factor of the basic helix-loop-helix

leucine zipper family. It forms homo- and hetero-

dimers (with USF2) and recognizes a CACGTG

motif termed E box, resulting in activation of

the gene transcription and enhanced expression

in response to various stimuli such as glucose

and dietary carbohydrates (38). USF1 regulates

the expression of several genes participating in

glucose and lipid metabolism, such as apolipopro-

tein C3 (APOC3), apolipoprotein A2 (APOA2),

apolipoprotein A5 (APOA5), apolipoprotein E

(APOE), hormone sensitive lipase (LIPE), hepatic

lipase (LIPC), glucokinase (GCK), islet-specific

glucose-6-phosphatase catalytic-subunit-related pro-

tein (IGRP), insulin (INS), glucagon receptor

(GCGR), ATP-binding cassette transporter A1

(ABCA1), fatty acid synthase (FAS), acetyl-CoA

carboxylase alpha (ACACA) and plasminogen acti-

vator inhibitor-1 (PAI1) (20,21,38–51). A more

complete list of the USF1 target genes is available

in a recent paper (52).

In the original study, genetic data were supported

by preliminary functional data, as the USF1 risk

haplotype had an effect on the expression profiles of

fat biopsies (17). Expression profiles of fat biopsies

of FCHL cases seemed to differ depending on their

carrier status for the associated USF1 haplotype

(17). A total of 25 genes were significantly upregu-

lated and 73 genes downregulated in the suscept-

ibility haplotype carriers (17). The upregulated

genes belonged to functional classes mainly related

to fat metabolism, and the downregulated genes

included several functional classes related to

immune response. Interestingly, the upregulated

genes included the stearoyl-CoA desaturase (SCD)

gene (17). The SCD activity has been shown to be

associated with plasma TG levels (53). The down-

regulated genes also included several known impor-

tant atherosclerosis-related genes, such as APOE,

Figure 1. Overview of the associated USF1 region in Finnish and Mexican familial combined hyperlipidemia (FCHL) families. The

associated region was restricted by ,70% (from 46 kb to 14 kb) using two different populations, the Finns and Mexicans (17,26). The rs

numbers of the single nucleotide polymorphisms (SNPs) are as follows: f11rs1 (rs836), f11rs4 (hCV1459766), f11rs5 (rs4339888), usf1s1

(rs3737787), usf1s2 (rs2073658), usf1s8 (rs2516838).

Genetics of FCHL 339



phospholipid transfer protein (PLTP), macrophage

scavenger receptor 1 (MSP1), arachidonate 5-

lipoxygenase (ALOX5), and complement compo-

nent 3a receptor 1 (C3AR1).

A recent study further demonstrated differential

expression of known USF1 target genes, APOE,

ABCA1 and angiotensinogen (AGT), between USF1

risk allele carriers and non-carriers using a larger

number of fat biopsies of FCHL and low HDL-C-

affected patients (n519) (52). No differences in the

characteristically low USF1 transcript levels were

observed between carriers of the USF1 risk versus

non-risk alleles in the original (17) or in this

subsequent study (52). However, it is possible that

even a subtle difference may have significant effects

on the expression of USF1 target genes.

Hoffstedt et al. studied the effect of USF1 variants

on lipolysis in adipocytes (54). Lipolysis is a critical

aspect of adipocyte function and manifests large

differences between individuals potentially due to

genetic differences. In this study including fat

biopsies from 196 normolipidemic obese women,

the usf1s2 (rs2073658) variant was associated

with the maximum lipolytic action in response to

stimulation by noradrenaline, as well as by b1-, b2-

and b3- adrenergic receptor agonists (dobutamine,

terbutaline, CGP12177 and forskolin). Importantly,

the carriers of the protective allele of the usf1s2

variant had a significantly increased maximum

lipolytic activity in response to these drugs. This

association between the USF1 variant and the

maximum lipolytic activity was observed in normo-

lipidemic women without any disease such as

FCHL, CHD or T2DM. The result may imply that

the defect caused by USF1 is present already before

the clinical manifestation of the disease. Defect in

USF1 may ultimately lead to disease when other

genetic or environmental factors accumulate in the

same individual.

Since the original finding in Finnish FCHL

families, the association between the DNA sequence

variations in USF1 and FCHL has been replicated in

several study samples (26,55–57) (Table I). The

first replication study including 24 extended multi-

generational Mexican FCHL families, replicated the

association, and moreover the associated region was

restricted to 14 kb (26) versus more than 46 kb in

the Finns (17) (Figure 1). These data provides a

shorter region with fewer variants available for func-

tional analyses. No gender differences were observed

in Mexican FCHL families (26). The most signifi-

cantly associated single nucleotide polymorphisms

(SNPs), usf1s1 (rs3737787) and usf1s2 (rs2073658),

or SNPs in linkage disequilibrium (LD) with

usf1s1/s2, were investigated in three other study

samples ascertained for CHD or for family history

of CHD (55–57). In extended Utah pedigrees with

family members suffering early death due to CHD,

early strokes, or early onset hypertension, the USF1

SNPs and haplotype were associated with FCHL,

TG and low-density lipoprotein cholesterol (LDL-

C) levels (57). In the European Atherosclerosis

Research Study II, Putt et al. examined the lipid

levels before and after meal and after oral glucose

tolerance test (56). They found differences in the

correlation between body mass index (BMI),

fasting LDL-C and glucose levels according to the

USF1 genotypes. It is worth noting that as in Finns

(17) the common allele of usf1s1 (rs3737787),

usf1s2 (rs2073658) or SNPs in LD with usf1s1/s2

represents the associated allele in all of these

studies, replicating the original study. It can be

concluded that these SNPs seem to capture the

disease-associated signal, although their direct

relationship to the functional defect contributing

to FCHL pathogenesis is not known yet.

Most recently, Komulainen et al. investigated the

role of USF1 variants and haplotypes as a risk factor

for cardiovascular disease events at the population

level (55) (Table I). Importantly, they observed that

female carriers of a USF1 risk allele had a two-fold

risk of a cardiovascular event and an increased risk of

all-cause mortality during the follow-up period in a

Finnish prospective population cohort consisting of

14,000 individuals, followed up for cardiovascular

events in a period of 7–10 years (55).

Two different studies have focused on the

contribution of USF1 SNPs to T2DM (58,59)

(Table I). In the first study by Ng et al., a significant

association of USF1 polymorphisms with T2DM

and the metabolic syndrome-related traits was

observed in Chinese T2DM families, although no

single SNP explained the previous linkage to the

1q21 (58). In the Chinese case-control sample, the

population-based hospital cases of T2DM were,

however, not associated with usf1s1 (58). In the

second study, Gibson et al. did not find differences

in allele frequencies between French diabetics and

healthy controls (59). To summarize, the results for

USF1 with T2DM and the metabolic syndrome have

included both positive and negative associations

(58,59). These data imply that there are also other

regional genes on 1q21 that contribute to the linkage

signals of these two disorders.

Interestingly, a gene for combined hyperlipidemia

(Hyplip1) in mouse was mapped to a region on

chromosome 3 in the HcB-19/Dem mouse that was

orthologous to human chromosome 1q21 (60). The

underlying gene, thioredoxin interacting protein

(TXNIP), was recently identified as a gene for

340 E. Suviolahti et al.



combined hyperlipidemia in mouse (61). TXNIP

provided thus a strong positional candidate for

human FCHL (62). However, several recent studies

show that variations in the TXNIP gene do not

confer the susceptibility to FCHL (17,63,64).

Regarding the possibility whether the identified

USF1 risk haplotype would have a long-range effect

on the expression of TXNIP, the TXNIP expression

profiles of fat biopsies from affected Finnish FCHL

family members having the USF1 risk haplotype

were compared with affected FCHL family mem-

bers, homozygous for the putative protective haplo-

type. No haplotype-dependent difference in TXNIP

expression was detected (17). To summarize, it

seems unlikely that TXNIP accounts for the

observed evidence of linkage between FCHL and

the 1q21 region.

Variants in the apolipoprotein gene cluster APOA1/C3/

A4/A5 are implicated in FCHL

Multiple studies predict the importance of the

APOA1/C3/A4 gene cluster as a modifier gene

complex in the development of FCHL (65–73)

(Table II), although not all studies have shown

the connection (74–76). The most investigated

Table I. Summary of the genetic studies on the USF1 gene, the first gene identified for familial combined hyperlipidemia (FCHL) using

positional cloning approach.

Trait Study sample Marker/SNP

Positive (+)/negative (2)

results Reference

FCHL and/or TGs Finnish FCHL families rs836 + (17)

rs790056 +
hCV1459766 +
rs4339888 +
rs3737787 +
rs2073658 +
rs2516839 +
rs2516838 +

FCHL and/or TGs Mexican FCHL families rs3737787 + (26)

rs2073658 +
hCV1459766 +

FCHL, TGs and/or

LDL-C

Utah families with premature

CHD, stroke or hypertension

rs3737787 + (57)

rs2073658 +

LDL-C and/or glucose Caucasian males with family

history of CHD and controls

rs3737787 + (56)

rs2073658 +

Cardiovascular event

and/or all cause

mortality (association

with individual SNPs

or 6-SNP haplotype)

Finnish CHD cases and

population-based cohort

rs10908821 + (55)

rs2073658 +
rs2774276 +
rs2516839 +
rs1556259 +
rs2774279 +

Lipolytic activity in

adipose tissue

Caucasian obese women rs3737787 + (54)

rs2073658 +

T2DM and/or metabolic

syndrome

Chinese T2DM families rs3737787 + (58)

rs2516841 +
rs2516839 +

T2DM and/or metabolic

syndrome

Chinese cases and controls rs3737787 2

rs2516841 2

rs2516839 2

T2DM Cases and controls for T2DM rs2516837 2 (59)

rs1556259 2

rs2516838 2

rs2073653 2

rs2774276 2

rs2516841 2

rs2073658 2

rs3737787 2

CHD5coronary heart disease; LDL-C5low-density lipoprotein cholesterol; SNP5single nucleotide polymorphism; T2DM5type 2

diabetes mellitus; TG5triglycerides.
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polymorphisms of this gene cluster are three restric-

tion enzyme polymorphisms, XmnI and MspI

residing upstream to the apolipoprotein A1

(APOA1) gene and the SstI site in the 39 untrans-

lated region of exon 4 of the APOC3 gene (77). The

positive studies include a Dutch study, in which the

minor alleles of these polymorphisms were asso-

ciated with elevated plasma TC, TG, LDL-C, apoB,

and apoC3 levels in Dutch FCHL families (67).

Furthermore, a suggestive evidence for linkage

between the MspI minor allele and plasma LDL-C

levels was detected (67). Based on the results,

Dallinga-Thie et al. suggested that the APOAI/C3/

A4 gene cluster is not the primary cause of FCHL,

but rather it has a specific modifying effect on

plasma TG and LDL-C levels in this lipid disorder

(67). The negative studies include a Finnish study in

which the MspI polymorphism was associated with

serum TC and apoB levels in spouses, but no

evidence of direct involvement of the APOAI/C3/A4

loci or haplotypes in the expression of FCHL in the

Finnish FCHL families was found (76).

Recently, APOA5 gene was added as part of the

APOA1/C3/A4 gene cluster (78). Variants of this

gene cluster have been linked to high TGs in both

the general population (78–87) and in FCHL (88–

90). In the Dutch FCHL families, APOA1/C3/A4/

A5 showed an association with TG levels and LDL

particle size, and the strongest evidence of associa-

tion was obtained with SNPs in APOA1 and APOA5

(89). Ribalta and colleagues also suggested a

potential implication of APOA5 in the hypertrigly-

ceridemia present in FCHL, because in hyperlipi-

demic patients with FCHL, the carriers of the minor

allele of a SNP in APOA5 had significantly increased

plasma TG levels when compared with the carriers

of the common allele (90). In British FCHL

families, alleles of the APOA1/C3/A4/A5 gene cluster

were overtransmitted to subjects with FCHL, and

the transmission of the common APOA1/C3/A4/A5

haplotype to the affected subjects was reduced (88).

Several studies also imply that APOA5 is a potential

risk factor for cardiovascular disease (82,91,92).

APOA5 is suggested to reduce plasma TGs by

inhibiting lipidation of apoB and thus reducing

the hepatic very low-density lipoprotein (VLDL)

production rate, as well as by stimulating LPL-

mediated clearance of TG-rich lipoproteins (93).

Overexpression of APOA5 has been shown to lower

TGs in mice and ApoA5 knockout mice have severe

hypertriglyceridemia (78,94). Recently, a study by

Nowak et al. implied that APOA5 is regulated by

insulin (46). Interestingly, insulin induces a dose-

dependent downregulation of APOA5 expression by

reducing the binding of upstream stimulatory factors

USF1 and USF2 to E-Box (59-CACGTG-39) of the

APOA5 promoter. It was also suggested, that the

inhibitory effect of insulin on the APOA5 transcrip-

tion involves a phosphorylation mechanism of USF

that modulates their binding to the APOA5 promo-

ter and results in APOA5 transrepression (46). The

downregulation of APOA5 by insulin could explain

the association between hypertriglyceridemia and

hyperinsulinemia. Interestingly, APOA5 is also a

highly responsive target gene of the peroxisome

proliferator-activated receptor alpha and may act as

a major mediator for fibrates in reduction of plasma

TGs (95).

Lipoprotein lipase and hepatic lipase genes in FCHL

The variants in the LPL gene have been of interest in

FCHL because LPL catalyzes the hydrolysis of TGs

of VLDL and chylomicrons and thus delivers fatty

acids to tissues (Table II). Nevin et al. identified

variations in the coding region of the LPL gene in 6

of 20 FCHL patients, the variations including

Asp9Asn, Val108Val and Ser447stop (96). Reymer

et al. found a common Asn291Ser variant of the LPL

gene in FCHL patients and observed an association

with FCHL and HDL-C levels, as well as with

catalytic activity of LPL (97). Since these studies,

the Asn291Ser and Asp9Asn variants have been

associated with reduced HDL-C, elevated TG, apoB

and/or insulin levels in FCHL patients in several

Table II. Genes associated with familial combined hyperlipidemia (FCHL) in previous studies.

Gene Ethnicity Replicated (at least once) Reference

USF1 Finnish, Mexican and Caucasian (Utah)

FCHL families

Yes (17,26,57)

APOA1/C3/A4/A5 Caucasian (Dutch, Spanish, Northern

European, European)

Yes (65–73,88–90)

LPL Caucasian (Dutch and Italian) Yes (96–105)

HNF4A Finnish and Mexican FCHL families No (only one study) (18)

CD36/FAT Caucasian (Dutch) No (only one study) (135)

TNFRSF1B Caucasian (Dutch) No (only one study) (126)

LEPR Caucasian (Dutch) No (only one study) (127)
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different studies (98–103). In addition to coding

variants in LPL, variations in the promoter region

have been identified in FCHL patients

(101,102,104,105). Yang et al. reported a hetero-

zygous carrier of a promoter variant (239C/T) in

LPL when screening 20 FCHL probands for

mutations in the putative LPL promoter region

(105). The variant resulted in diminished transcrip-

tional activity of the LPL gene, potentially by

abolishing the transcription factor Oct-1 binding

site. The 293G/T and 253C/G variants were also

reported to affect promoter activity (104). However,

not all studies have supported the role of LPL in

FCHL (74,106,107). In addition to FCHL, varia-

tions in LPL have been associated with CHD (108).

Evidence for linkage to the hepatic lipase (LIPC)

locus (Pv0.003) and to the lecithin:cholesterol

acyltransferase (LCAT) locus (Pv0.0006) has also

been observed (13) and a coding variant in LIPC was

associated with elevated TC and apoB levels in the

Dutch FCHL families (109). However, the linkage

to LIPC locus was not confirmed in the Finnish

FCHL families (106).

Variants in HNF4A gene associated with lipid levels in

FCHL

A region on chromosome 20q12–q13 has been

linked to T2DM and obesity in numerous studies

(110–114). Recently, several independent groups

have identified associations between SNPs in the

HNF4A gene residing in this 20q12–q13.1 region

and T2DM (115–119). Previously mutations in

HNF4A have been demonstrated to cause maturity

onset diabetes of the young type I (MODY1) (120).

Interestingly, the same chromosomal region on

20q12–q13 has also been linked to TGs and low

HDL-C in FCHL families (11,121,122).

Subsequently, evidence for linkage has been found

with high TGs in other populations (123,124).

There is a clear phenotypic overlap between FCHL

and T2DM, patients with T2DM exhibiting often

hypertriglyceridemia and patients with FCHL glu-

cose intolerance and/or insulin resistance (5,125).

Both diseases also predispose to CHD.

Considering this clear phenotypic overlap between

T2DM and FCHL, and the fact that both disorders

have been linked to the same chromosomal region

on 20q (11,110,111,113,114,121,122), it is possible

that HNF4A contributes to linkage signals in both

diseases. Recently common HNF4A variants and

their haplotypes were investigated for association in

Finnish and Mexican FCHL families, comprising

1020 subjects (18) (Table II). The common

HNF4A variants and haplotypes were associated

with elevated serum lipid levels, the metabolic

syndrome as well as with elevated glucose para-

meters in the Finnish FCHL families (18).

Importantly, both the Finnish and Mexican FCHL

families shared two common lipid-associated

HNF4A haplotypes (18). This is the first study

demonstrating that common HNF4A variants and

their haplotypes are associated with high plasma

lipid levels and the metabolic syndrome.

HNF4A is a transcription factor, regulating several

genes in lipid and glucose metabolism. Interestingly,

it has been shown that cooperative binding of USF1

and HNF4A drives the transcription of the human

APOA2 gene (20). In addition, sequences from sites

bound by HNF4A and USF1 were demonstrated to

show significant overlap in HepG2 cells (19). As

interactions between DNA sequence variants are

suggested to be critical in the etiology of complex

traits such as FCHL, it is possible that DNA

sequence variants in USF1 and HNF4A interactively

influence the susceptibility to FCHL.

TNFRSF1B and LEPR as candidate genes for QTL

affecting apoB levels on chromosome 1

A genome-wide scan in 18 Dutch FCHL families

revealed a quantitative trait locus (QTL) affecting

apoB levels on chromosome 1 short arm (15). The

candidate genes associated with FCHL in this region

include tumor necrosis factor receptor superfamily,

member 1B (TNFRSF1B) (126) and leptin receptor

(LEPR) (127). TNFRSF1B, located on 1p36.2, was

associated with susceptibility to FCHL in the Dutch

family sample (126). For further support, the levels

of soluble extracellular domain of TNF-R p75 were

lower in the hyperlipidemic than in the normolipi-

demic relatives of FCHL patients (128). A poly-

morphism in the coding region of the LEPR gene

(Gln223Arg), located on 1p31 was associated with

an increased risk of FCHL and a difference in HDL-

C levels (127). To determine whether one or both of

these genes explain the linkage signal, or if there are

additional regional genes involved, requires further

investigation.

Other candidate genes investigated for FCHL

include manganese superoxide dismutase locus on

chromosome 6, which showed suggestive evidence of

linkage in Dutch FCHL families with FCHL, as well

as with related traits such as TC, apoB and apoC3

levels (Pv0.02) (13). Biochemical and genetic

associations of plasma apoA2 levels with FCHL

have also been suggested (129). The role of APOA2

in FCHL has been discussed recently (130,131).
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Gene expression profiling provides novel candidate genes

for FCHL

Gene expression is the major determinant of the

phenotype and function of a living organism. The

profile of expressed genes in a particular cell is highly

dynamic and changes rapidly in response to cellular

events and external stimuli. For long, methods have

been available to measure the gene expression of a

limited number of genes at a time. Recently, DNA

microarray technology has provided a tool to

monitor the expression pattern of a whole genome

simultaneously on a single chip (132). This technol-

ogy provides a useful tool to profile gene expression

at the genomic level, and to determine sets of genes

expressed or turned off together. Consequently,

these techniques allow for identification of the genes

and metabolic pathways that are differentially

expressed in healthy and diseased individuals and,

thus, provide an alternative approach to identify

novel genes and pathways involved in FCHL.

Three studies have been performed to identify the

differential gene expression between FCHL patients

and healthy controls (133–135). One of the studies

investigated lymphoblastic cell lines (133), and two

others focused on adipose tissue (134,135). The first

study by Erlings et al. detected 25 differentially

expressed genes out of 588 genes in subcutaneous

adipose tissue obtained from 5 unrelated FCHL and

4 control individuals (134). Many of the differen-

tially expressed genes had been implicated in the

activation of the adipocyte cell cycle. Expression of

tumor necrosis factor, alpha (TNFA) was upregu-

lated in FCHL patients, which is of particular

interest since TNFRSF1B variants and decreased

levels of soluble extracellular domain of TNF-R p75

have been observed to be associated with FCHL

previously (126,128).

Morello et al. studied the gene expression in

immortalized lymphoblastic cells obtained from

FCHL cases and their normolipidemic spouses and

relatives (133). Of the 7647 genes expressed in these

samples, 166 genes were differentially expressed

between cases and controls. Categorizing the differ-

entially expressed genes according to biological

processes that the genes were involved in revealed

that almost half of the genes were taking part

in metabolism. Interestingly, the early growth

response 1 gene (EGR-1) encoding a transcription

factor was upregulated in lymphoblasts (133), as

well as in the adipocytes derived from FCHL

patients in the previous study (134). Of the 166

genes differentially expressed in the lymphoblastic

cell lines, surrounding sequences of 16 genes

contained the EGR-1 consensus sequence (59-

CGCCCCCGC-39) (133).

Meex et al. (135) measured the expression levels

of 640 genes in 5 unrelated FCHL patients and 10

control individuals. Initially, 27 genes were identi-

fied differentially expressed between FCHL cases

and controls. After validation CD36/FAT was shown

to be upregulated in the original sample of FCHL

cases using quantitative reverse transcription

polymerase chain reaction (RT-PCR), as well as in

five additional pairs of FCHL cases and controls.

CD36/FAT is a multiligand class B scavenger

receptor that has been implicated in the transmem-

brane transport of long-chain fatty acids and in the

regulation of angiogenesis. Interestingly, Meex et al.

found a significant correlation between the CD36/

FAT expression and esterification of fatty acids into

phospholipids and TGs, suggesting that this gene

has a functional role in lipid metabolism (135).

To summarize the candidate gene studies and the

evidence obtained in replication studies (Table II), it

seems evident that DNA sequence variants at least in

USF1, LPL and the APOA1/C3/A4/A5 gene cluster

confer the susceptibility to FCHL. However, none of

the candidate genes investigated so far account solely

for a major genetic component in FCHL, further

confirming the current understanding that the

complex FCHL phenotype is an end result of

genetic and environmental interplay of multiple

factors (Figure 2).

Chromosomal loci identified for FCHL

To identify novel loci for FCHL, genome-wide scans

have been performed in the Finnish (11,122), Dutch

(14,15) and British families with FCHL (16). Loci

on chromosomes 1q21, 2p, 2q31, 8q, 10p11.2,

10q11.2–10qter, 16q, 20q and 21q21 were identi-

fied in the Finnish FCHL families (10,11,122), and

loci on chromosomes 1p, 2p, 11p, 16q and 19q in

the Dutch FCHL families (14,15). A combined

genome scan of the Dutch and Finnish families with

FCHL identified three loci for HDL-C on 2p, 9p

and 16q (12). In addition, a recent genome scan in

the British FCHL families replicated the 11p locus

and identified two novel candidate loci on 6q and 8p

(16).

Three of these chromosomal regions, 1q21–23,

11p and 16q22–24.1, have been replicated in several

FCHL study samples. The 1q21 locus has been

observed in the Finnish and Dutch genome scans, as

well as in independent studies of Chinese, German,

US Caucasian and Mexican families with FCHL

(10,11,15,24–26). Another replicated locus is the

11p region, which has been detected in the Dutch

and British FCHL families (14,16). This region
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showed evidence of linkage to FCHL, as well as to

the TC and TG traits in the British study sample

(16). No evidence of linkage for apoB levels was

observed for this 11p region (14), implying that this

locus may not directly contribute to the observed

elevation of apoB-containing particles in FCHL.

Genetic heterogeneity was demonstrated for the 11p

region, as 49% of the British FCHL families were

linked to this region (16).

Given the known difficulties in replicating and

verifying the results of complex traits, international

collaboration to replicate findings in independent

and combined study samples is of utmost impor-

tance to accelerate the gene identification process.

This strategy is based on increased statistical power

to verify those of the identified regions that have the

highest statistical likelihood to harbor causative

genes. The power of this strategy has recently been

demonstrated with other complex diseases, such as

inflammatory bowel disease and asthma (136–138),

as well as in a combined data analysis of Dutch and

Finnish genome-wide scans for FCHL (12). In that

study, three regions, 16q24.1, 2p25.1, and 9p23,

were identified where the evidence for linkage

emerged from the combined study sample (12).

The region on 16q24.1 resulted in most significant

evidence for linkage, a lod score of 3.4, for HDL-C,

50% of the Finnish and Dutch families being

linked to this region. This very same 16q24.1

region was also recently implicated for HDL-C in

Mexican Americans (139), as well as in several other

independent studies (12,26,122,139–141). Different

study populations could thus be utilized first to

replicate the loci that harbor susceptibility genes for

FCHL, and second, to fine-map these verified

regions.

It has not been directly evaluated whether the

three replicated regions on 1q21, 11p and 16q

explain the dyslipidemia in some or all FCHL

families. These types of studies are clearly warranted

to estimate the risk related to each variant, their

contribution to FCHL and its component traits, as

well as to investigate the likely gene-gene interac-

tions in FCHL.

Future directions and concluding comments

FCHL is a typical complex trait with several genes,

environmental factors and their interactions con-

tributing to the disease phenotype (Figure 2). The

possible high genetic complexity and the fact that the

current strategies are based on functional character-

ization of mutations of monogenic diseases make the

dissection of the wide allelic spectrum of variants

conferring the susceptibility to complex diseases very

challenging. These variants can result in minor

changes in protein product or reside in promoters

or other regulatory regions; or they can cause small

changes in the binding affinity of a transcription

factor or slightly alter gene expression levels, timing

and tissue specificity. In all of these cases, it may be

difficult to demonstrate not only the functional

consequences of a single variant but also of the

allelic combinations of multiple variants. Nutrients

Figure 2. Multiple genetic and environmental factors confer the susceptibility to familial combined hyperlipidemia (FCHL).
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or other environmental factors may potentially also

modulate differences introduced by genetic varia-

tion. It is thus possible that each individual variant

causes subtle changes in the disease phenotype.

Accumulation of multiple deleterious gene variants

and environmental factors in a particular individual

will then ultimately lead to the expression of the

disease phenotype.

Candidate gene studies, as well as positional

cloning have provided novel candidate genes for

FCHL of which variants in USF1, the APOA1/C3/

A4/A5 gene cluster and LPL have been replicated in

several study samples from distinct populations.

Many of the variants currently associated with

FCHL are common and the risk involved with them

at the population level is not known at the moment.

Extensive population-based studies, such as recently

conducted for USF1 (55) and multiple T2DM

candidate genes (142), estimating the risk related

to each variant and their relative contribution to the

disease susceptibility, are warranted.

Now in the post-genomic era, over a hundred

different genomes including the human genome

have been sequenced, and the HapMap project has

described the human sequence variation throughout

the human genome (143). This vast amount of

information together with advancing genotyping

technologies have enabled genome-wide LD and

association studies using hundreds of thousands of

SNPs. These novel genomic approaches are

expected to facilitate the dissection of the molecular

basis of human complex diseases and provide novel

insights into disease pathogenesis in near future.

Utilization of the HapMap data offers short-cuts to

gene identification providing that common variants

contribute significantly to common diseases (144–

146). Moreover, strategies using tag SNPs, derived

from the HapMap data, have most power to detect

these common causative variants (147). Conse-

quently, the novel genome-wide association app-

roaches are more likely to identify common than

rare variants influencing the FCHL susceptibility.

Based on the recent candidate gene studies of

DNA sequence variants contributing to levels of

plasma HDL-cholesterol in different populations,

it is, however, likely that rare DNA sequence

variants also contribute to disease susceptibility

(22,23). As large-scale sequencing of candidate

genes in affected individuals is currently the only

approach to identify new rare variants, more efficient

and cost-effective sequencing approaches are war-

ranted.

The Human Genome Project and HapMap

Project have provided the basic tools for unraveling

the complex genetics of FCHL and other complex

traits. However, this challenging task can be

accomplished only by combining the accumulating

biological information with interdisciplinary knowl-

edge and international collaboration. Skillful com-

bining of molecular medicine and systems biology is

needed to overcome the greatest challenge of any

complex disease, i.e. the meaningful analysis of the

enormous amount of data using tools reflecting

accurately the underlying phenotypic and genetic

complexity.
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