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REVIEW ARTICLE

Molecular genetics of Alzheimer’s disease: An update

NATHALIE BROUWERS1,2,3, KRISTEL SLEEGERS1,2,3 &

CHRISTINE VAN BROECKHOVEN1,2,3

1Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium, 2Laboratory of

Neurogenetics, Institute Born-Bunge, Antwerpen, Belgium, and 3University of Antwerp, Antwerpen, Belgium

Abstract
Alzheimer’s disease (AD) is a complex disorder of the central nervous system (CNS). Molecular genetic research has
provided a wealth of information regarding the genetic etiology of this devastating disease. Identification and functional
characterization of autosomal dominant mutations in the amyloid precursor protein gene (APP) and the presenilin genes 1
and 2 (PSEN1 and PSEN2) have contributed substantially to our understanding of the biological mechanisms leading
towards CNS neurodegeneration in AD. Nonetheless, a large part of the genetic etiology remains unresolved, especially that
of more common, sporadic forms of AD. While substantial efforts were invested in the identification of genetic risk factors
underlying sporadic AD, using carefully designed genetic association studies in large patient-control groups, the only firmly
established risk factor remains the o4 allele of the apolipoprotein E gene (APOE). Nevertheless, one can expect that with the
current availability of high-throughput genotyping platforms and dense maps of single-nucleotide polymorphisms (SNPs),
large-scale genetic studies will eventually generate additional knowledge about the genetic risk profile for AD. This review
provides an overview of the current understanding in the field of AD genetics, covering both the rare monogenic forms as
well as recent developments in the search for novel AD susceptibility genes.
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Introduction

Alzheimer’s disease (AD) is a neurodegenerative

disorder of the central nervous system (CNS) and

is the most common dementia subtype in the elderly

(50%�70% of demented patients). Clinically, AD is

characterized by progressive deterioration of cogni-

tive functions, ultimately leading to complete de-

pendency and death. Most AD patients present with

impairment of recent memory, but during disease

progression other symptoms such as changes in

personality and behavior become apparent. There

is a substantial overlap in clinical symptoms between

AD and other CNS degenerative brain diseases

involving dementia (e.g. frontotemporal lobar de-

generation (FTLD) and Creutzfeldt-Jakob disease).

Therefore, a definite diagnosis of AD is obtained

only by pathological examination of the autopsied

brain. In addition to severe neuronal loss, AD brains

show two distinct pathological lesions: extracellular

plaques composed of aggregated amyloid b (Ab)

peptides, and intracellular neurofibrillary tangles

consisting of filaments of hyperphosphorylated pro-

tein tau (1).

AD has a complex etiology involving the inter-

play of both genetic and environmental factors (2).

Two major risk factors are increased age and a

positive family history of dementia. An European

population-based study calculated an AD prevalence

of 5% in the age group 65 years and older, which

increased to 22% among those aged 95 years and

older (3). Although the majority of patients develop

clinical symptoms at later age (�65 years; senile or

late-onset AD), 1%�2% of patients have an earlier

disease onset (presenile or early-onset AD). Inde-

pendently of onset age, AD brain pathology is
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identical, though in young patients the disease

progresses more rapidly, and brain pathology is

more pronounced. Twin studies identified a sub-

stantial genetic component in AD, with an esti-

mated heritability of up to 80% (4). Molecular

genetic studies performed in the last 20 years have

produced important new genetic data, though

predominantly in studies of rare monogenic forms

of early-onset AD. Highly penetrant mutations were

identified in three genes, the amyloid precursor

protein gene (APP) and the presenilin genes 1 and

2 (PSEN1 and PSEN2) (2). Also, a fourth gene,

the apolipoprotein E gene (APOE), a major risk

gene was identified in late-onset AD families (5).

Except for APOE, not much is known about other

risk genes contributing to late-onset AD, though

several such risk genes must exist with effect sizes

equal to or even larger than the APOE o4 allele

(6,7).

Monogenic forms of AD

Amyloid precursor protein gene (APP)

APP, located on chromosome 21, was the first gene

identified in autosomal dominant early-onset AD

families (8). Instrumental here were the observation

of AD brain pathology in Down’s syndrome (DS) or

trisomy 21 patients (9), the isolation and sequencing

of the senile plaque Ab peptide (10), and

the mapping of its precursor gene APP (11) near

the AD-linked chromosomal region on chromosome

21 (12,13). Mutation analysis of APP in AD was

stimulated by the observation of linkage with APP

(14) and the identification of a missense mutation in

its Ab sequence in hereditary cerebral hemorrhages

with amyloidosis-Dutch type (HCHWA-D) (Dutch

E693Q mutation, numbering according to the

770 amino acids isoform) (15). HCHWA-D is a

rare autosomal dominant disorder characterized by

recurrent cerebral hemorrhages due to extensive Ab
congophilic amyloid angiopathy (CAA) affecting

small cerebral blood vessel walls (16). The first AD

mutation in APP was identified near the C-terminal

site of the Ab sequence and was nicknamed London

APP mutation (V717I) (8). A double-mutation was

identified in AD near the N-terminus of the Ab
sequence, the Swedish mutation APP KM670/

671NL (17). We identified a second mutation within

the Ab sequence, the Flemish APP mutation

(A692G) located adjacent to the Dutch APP muta-

tion, which associated AD and CAA (18).

Since then, 21 different missense mutations have

been identified in APP in 68 families (AD Mutation

Database; http://www.molgen.ua.ac.be/ADMutat

ions/). Nonetheless APP mutations explain less than

1% of early-onset AD families (19).

Amyloid precursor protein. APP consists of 18 exons

within a genomic region of 290 kb with part of exons

16 and 17 coding for the Ab peptide (20)

(Figure 1A). Alternative splicing produces three

major isoforms (Figure 1B), of which APP695 is

predominantly expressed in the brain, especially in

neurons. APP is a single-pass type I transmembrane

glycoprotein with a small cytosolic C-terminal do-

main and a large luminal N-terminus (11).

Contrary to what was initially assumed, the Ab
peptide is also formed under normal physiological

conditions (21,22). APP is proteolyzed by a-, b-,

and g-secretases following one of two mutually

exclusive ways: the constitutive or non-amyloido-

genic pathway which precludes the formation of

intact Ab peptides and is the major APP processing

pathway in most cell types (23); or alternatively the

amyloidogenic pathway which is particularly en-

riched in neurons and gives rise to Ab peptides

(21,22,24�26) (Figure 1C). In the latter, APP is

cleaved first by b-secretase at N-terminal position 1

of the Ab sequence (b-site) (27). Of note is that

b-secretase also cleaves APP at the adjacent b?-site,

producing Ab11�40 and Ab11�42 (27). Next g-secre-

tase cuts the membrane-bound C-terminal frag-

ment to produce Ab peptides (28,29), a

heterogeneous mixture of Ab peptides with varying

C-terminal lengths of 39�43 amino acids. Under

physiological conditions two major Ab species are

present. The major form is Ab40, ending at

position 40 (90%), whereas about 10% end at

position 42, Ab42. It is Ab42 that is predominantly

present in amyloid plaques in AD brains (30).

Studies have shown that this more hydrophobic

Ab42 has a higher aggregation propensity compared

to Ab40.

In addition to the regular g-sites, there are two

other cleavage sites located downstream of residue

42, e.g. the g-like cleavage site or o-cleavage site

Key messages

. Monogenic forms have contributed

significantly to the current understanding

of the pathobiology of Alzheimer’s disease

(AD).

. The amyloid precursor protein is a key

protein in developing novel therapies for

AD.

. Novel genetic designs will provide clues for

defining risk profiles for sporadic AD.
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(31,32) and the z-cleavage site (33) (Figure 2).

Proteolysis by g-secretase at these sites generates

longer Ab peptides, e.g. Ab49 and Ab48 for

o-cleavage and Ab46 and Ab45 for z-cleavage, and

studies showed that the g-secretase cleavages of APP

C-terminal fragments are likely sequential events.

The first cut by g-secretase occurs at the o-site

releasing the APP intracellular domain (AICD) and

producing Ab49 and Ab48. These Ab peptides stay in

the enzyme’s active site and are subsequently cleaved

at the z-site (Ab46/Ab45) and the g-site, ultimately

releasing Ab40 and Ab42 (34�38) (Figure 2). In this

manner APP is cleaved every three amino acids

which fits well into an a-helical model of APP

Figure 1. A: Schematic presentation of amyloid precursor protein (APP) at the genomic, transcript, and protein level. Numbers (genomic

and transcript) indicate exons and yellow-colored exons (transcript) designate alternatively spliced exons. At the transcript level,

untranslated regions (UTR) are represented as dark gray boxes; coding regions are shown in light gray. Pink boxes indicate the portion of

the protein from which the Ab peptide and the APP intracellular domain (AICD) are formed. B: Different APP isoforms, produced by

means of alternative splicing, that have been isolated from human tissue. Each transcript is named according to the protein that can be

translated from the transcript, i.e. APP770 encodes an isoform containing 770 amino acids. C: Schematic overview of the two major APP

processing pathways, i.e. the constitutive and the amyloidogenic pathway. Arrowheads indicate the respective cleavage sites (a-, b-, and g-

site); arrows indicate the cleavage event by the respective proteases (a-, b-, and g-secretase).
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processing, with Ab40 and Ab42 cleavages on oppo-

site sites of the transmembrane domain (37).

APP missense mutations. All pathogenic APP mis-

sense mutations are located in or near the Ab
sequence and in the vicinity of protease cleavage

sites, exerting their pathogenic effect by influencing

APP proteolytic processing (for review see (39))

(Table I; Figure 2). The Swedish APP mutation

KM670/671NL increased proteolysis at the b-site,

thereby elevating total Ab levels (40,41). Very

recently we identified a novel mutation, E682K, in

a familial early-onset probable AD patient (onset age

47 years), altering the highly conserved position 11

Figure 2. Schematical illustration of sequential APPcleavages producing amyloid Ab peptide. In a first cleavage event, amyloid precursor

protein (APP) is cut at the Ab N-terminus (b-secretase action) releasing its large soluble ectodomain (sAPPb) in the extracellular space.

Subsequently, the membrane-bound C-terminal stub (CTFb) is cleaved downstream of the C-terminal end of Ab by the g-secretase

complex. The four possible cleavage sites (g-, g?-, z-, and o-sites) are indicated by scissors. The first C-terminal cut occurs at the o-site (o-site
g-secretase activity) and releases the APP intracellular domain (AICD) into the cytosol. The majority (�90%) of CTFb is cleaved between

amino acids 49 and 50 (blue scissors) producing Ab49; however, an alternative cleavage occurs between amino acids 48 and 49 (purple

scissors) leading to the formation of Ab48. Both membrane-bound peptides serve as substrates for subsequent cleavage events (z-site, g- and

g?-site g-secretase cleavage), cutting the peptides every three amino acids, ultimately producing Ab40 and Ab42 (or Ab39 in case Ab42 is not

yet released into the extracellular lumen before the last cleavage event takes place). Amino acid positions (gray numbers) are numbered

starting from the N-terminus of Ab. Mutated amino acid positions are indicated in red, non-pathogenic variants are shown in green. Major

cleavage events, giving rise to the production of Ab40, are indicated by blue scissors. Minor cleavage events, producing Ab42, are shown in

purple.
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of the alternate b?-site (Van Broeckhoven et al.

unpublished data). At this point, we have not yet

completed the genetic studies, neither have we

examined the effect of this mutation on Ab proces-

sing. However, a study examining the selectivity of

b-secretase cleavage of APP showed that blocking

the b?-site by introducing the artificial double-

mutation Y681K/E682K shifted b-secretase clea-

vage entirely to the b-site (42). Therefore, we can

assume that also E682K affects b?-site processing of

APP and potentially exerts its pathogenic effect by

increasing Ab1�40 and Ab1�42 levels as in the Swedish

APP mutation. On the other hand, we cannot

exclude that this mutation renders Ab a better

substrate for b?-site cleavage, increasing the propor-

tion of N-truncated peptides.

Mutations at the g-site affect the positions where

APP C-terminal fragments are cleaved, e.g. position

40 or 42 of the Ab peptide, with different mutations

exerting distinct effects on g-secretase activity (43).

Although results differ among studies and cell types

used, the overall effect of these C-terminal mutations

is an increase in the relative amount of fibrillogenic

Ab42 (44,45). Therefore, the best predictor for

pathogenicity of an APP mutation in an in vitro cell

assay is the Ab42/Ab40 ratio. The two most C-terminal

APP mutations, Australian L723P and Belgian

K724N, also increased the Ab42/Ab40 ratio (39,46).

Since o- and z-cleavages generate intermediates for

further g-processing, it was predicted that alterations

in APP processing at these sites would also result in a

relative increase of Ab42 and the Ab42/Ab40 ratio. This

was confirmed for several C-terminal APP mutations

(T714I, V717F, and L723P) (35,37,47). For these

mutations elevated levels of AICD49�99 (numbering

according to Ab peptide) and its N-terminal counter-

part Ab48 were formed, often combined with a

concomitant decrease in the physiologically predo-

minant species (AICD50�99 and Ab49) (35,37,47).

Interestingly, the latest model for APP g-secretase

processing proposed that Ab48 gives rise to the

production of Ab42 while Ab49 is converted to Ab40,

explaining how differential cleavage at the more

C-terminally located cleavage sites would result in

an increased Ab42/Ab40 ratio (36�38). Since these

differences in o-cleavages also generate different

AICD fragments, it is plausible that mutations might

affect AICD function. The normal function of

AICD has not been unambiguously determined yet,

but it is presumed to function in neurogenesis (48),

transcriptional regulation of target genes (49), and

signal transduction (49). Affecting either one or all of

these processes could contribute to the mutation’s

pathogenicity.

Mutations at the a-secretase site interfere with

processing of APP at its internal Ab peptide cleavage

site (a-site) (50). This was shown for the Flemish

APP mutation (A692G) (18), which decreased a-

cleavage (51,52) resulting in more substrate for the

amyloidogenic processing into Ab peptide. However,

most a-site mutations do not result in increased

Ab secretion, in fact they are associated with reduced

levels of Ab peptides (52�54), suggesting a differ-

ent mechanistic action. Since a-site mutations are

Table I. Overview of the effects of different types of mutations in Alzheimer’s disease genes on the processing of amyloid precursor protein

(APP) and the production of Ab.

Gene Type of mutations Location of mutations Effect of mutations

APP missense N-terminal of Ab peptide

(b-secretase site)

enhanced b-secretase cleavage

0 increased Ab production

APP missense Ab peptide encoding

region

alteration of the Ab sequence and its properties

0 increased aggregation propensity

0 increased protofibril and/or fibril

formation reduced a-secretase cleavage

0 increase in b-secretase substrate

APP missense C-terminal of Ab peptide

(g-secretase sites)

decreased cleavage at Ab40 and/or increased

cleavage at Ab42

0 relative increased production of Ab42 compared

to Ab40

APP gene/locus duplication whole gene increased levels of APP as substrate for Ab
production; relatively increased production of

Ab42 compared to Ab40

APP promoter mutations 5? regulatory region increased levels of APP as substrate for Ab
production

PSENs missense mutations*
insertions/deletions*
genomic deletions

scattered over the protein decreased g-secretase activity

alterations in the position of the cleavage site

0 relative increased production of Ab42 compared

to Ab40

Abbreviations: APP, amyloid precurson protein; PSENs, presenilins.
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located within the Ab sequence they alter its amino

acid composition and therefore its physicochemical

properties. Several studies have shown an enhanced

protofibril and/or fibril formation (E693Q, E693G,

and D694N) (15,53,55�60) or increased fibril sta-

bility when formed (A692G) (61) for the mutant Ab
peptides. Also the affinity and toxicity towards

cerebrovascular cells was altered for some mutant

Ab peptides (58,62�67), providing an explanation

for the association of several a-site mutations with

different clinical/pathological characteristics such as

intracerebral hemorrhages due to extensive CAA

(E693Q, E693K), intracerebral hemorrhages and

dementia (A692G), or dementia only (E693G) (50).

APP regulatory and dosage mutations. More recently

APP mutations were identified that affect APP copy

number or transcriptional activity. An APP locus

duplication was identified in five autosomal domi-

nant early-onset AD families (68). All five duplica-

tions had different chromosomal break points and

contained additional genes, implying that the APP

locus contained a recombination hot spot. The APP

duplication patients had a mixed phenotype of AD

and/or intracerebral hemorrhages, caused by exten-

sive CAA (68,69). In one Dutch early-onset family,

we observed a similar phenotype of AD with CAA

caused by a genomic duplication of only APP (70).

Although there are only few studies, so far APP

duplications account for about 8%�10% of auto-

somal dominant early-onset AD families and 3% of

familial AD (68�71).

In the 5? regulatory region of APP we identified

mutations in probable early- or late-onset AD that

significantly increased APP transcriptional activity in

vitro with some mutations increasing expression by a

factor of nearly two (72,73). Unfortunately, we had

no autopsied brain available of AD patients carrying

these promoter mutations and thus could not obtain

a definite diagnosis of AD, nor could we examine

APP expression in vivo. However, very recently one

mutation carrier (APP -369C�G) died and neuro-

pathological diagnosis confirmed AD pathology with

a strong CAA component similar to AD duplication

patients (Brouwers et al. unpublished data). None-

theless, one genetic study was unable to replicate our

findings (74), indicating that further studies are

needed to define the pathogenic role of APP

promoter mutations in risk for AD.

Higher levels of g-secretase substrate (e.g. APP

C-terminal fragments) have been directly correlated

with an increased Ab42/Ab40 ratio (75). This sug-

gests that elevated levels of APP in case of APP

duplication or increased APP transcriptional activity

(Table I), could ultimately result in an elevated Ab42/

Ab40 ratio similar to that observed for APP g-site

mutations. Whether this is the case in vivo in patients

carrying such a mutation awaits further investiga-

tion.

Presenilin 1 and 2 genes (PSEN1 and PSEN2)

Initial linkage studies showed that not all AD

families could be explained by a genetic defect

located on chromosome 21 (13), and mutation

analyses showed that the majority of AD families

did not segregate an APP mutation (19,76�80).

Consequently, genetic heterogeneity of familial AD

was further investigated, and significant linkage was

obtained in multiple AD families supporting a major

early-onset AD locus on chromosome 14 (14q24.3)

(81�84). Eventually, positional cloning identified the

chromosome 14 gene, and it was named presenilin 1

(PSEN1) (85), based on the observation of missense

mutations in several linked pedigrees (86,87).

In the extended Volga-German AD family (88), a

genome-wide study identified linkage to chromo-

some 1q31�42 (89). Following the identification of

PSEN1, homology mapping identified a second

PSEN gene, PSEN2, in the linked region (90,91),

in which a missense mutation (N141l) segregated

with AD in seven Volga-German kindreds (90). A

second missense mutation (M239V) in PSEN2 was

identified in an Italian family (91). To date, 10

PSEN2 mutations have been identified in 18 fa-

milies, while 164 PSEN1 mutations appear in 361

families (92) (AD Mutation Database). In a popula-

tion-based epidemiological sample of early-onset

AD, we estimated the overall mutation frequencies

of PSEN1 and PSEN2 at, respectively, 6% and 1%

(93).

Most PSEN mutations cause typical AD, clini-

cally and pathologically indistinguishable from

sporadic AD, except for the early onset age and a

more rapid and pronounced disease progression.

Nonetheless, PSEN mutations are occasionally

associated with AD with onset age �65 years (93)

(AD Mutation Database). In the Volga-German

kindreds some PSEN2 N141l carriers had late-onset

AD (90,91), and two other PSEN2 mutations

(V148I and Q228L) were detected in patients with

an onset �65 years (94,95). More recently, two

PSEN1 mutations (A79V and R269H), previously

associated with early-onset AD, were also found in

late-onset AD patients (96,97). We observed in

Belgian AD patients, with onset 570 years, mis-

sense mutations in PSEN1 (C263F), and PSEN2

(R62C and R71W) in three AD patients with onset

age �65 years (98). Together these observations
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suggest that modifying factors influence onset age in

PSEN mutation carriers.

Presenilins (PSENs). PSEN1 covers a genomic region

of 984 kb and comprises 13 exons (99), whereas

PSEN2 is only 925 kb in size and has 12 exons

(100) (Figure 3A). Apart from differences in geno-

mic size and number of exons, the PSENs have a

similar gene structure. Same as APP, PSENs are

expressed in a wide variety of tissues including brain,

although expression of PSEN2 is remarkably lower

in brain (85,90,91). In brain, the PSENs are

primarily expressed in neurons, with higher levels

noted in the cerebellum and the hippocampus (101�
103). Both genes produce a number of alternatively

spliced transcripts.

The PSEN proteins share an overall amino

acid sequence identity of 67% (90,91). Hydropho-

bicity plots suggested that PSENs represent

integral membrane proteins containing at least seven

transmembrane domains that are highly conserved

between human PSENs and their orthologues

(85,90,91), but the topology of PSENs remained a

matter of debate (104�108). Recent evidence
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indicated that PSENs most likely adopt a nine-

transmembrane topology (109�111) (Figure 3B).

Under physiological conditions, the bulk of

PSENs are endoproteolytically processed by clea-

vage within the large hydrophilic loop, yielding N-

and C-terminal fragments that are present in a 1:1

stoichiometry, forming stable heterodimeric com-

plexes (112�118). Endoproteolytic cleavage is a

highly regulated process happening after intramole-

cular interactions have been established, but frag-

ments derived from the different PSEN molecules

do not associate with each other (119). Although

endoproteolytic cleavage is not necessary to produce

functionally active presenilin proteins (112), both

fragments are essential to ensure presenilin activity

(118,120,121). PSENs are predominantly located in

the endoplasmic reticulum and the intermediate and

early-Golgi compartment (101,122�124), implying

that they are involved in protein processing.

PSENs are g-secretases. The multiple transmembrane

topology of PSENs indicated that they function as

cell receptors, channel proteins, or in intracellular

trafficking of proteins. Since PSENs show substan-

tial homology with SPE-4, a Caenorhabditis elegans

protein that is involved in storage and transport of

proteins (85,90), it was presumed that the PSENs

had a similar function, e.g. regulating intracellular

transport of APP (85,90). Insights into the function

of PSENs resulted from a genetic screen in C. elegans

aiming at identifying proteins involved in Notch

(LIN-12) signaling. Here a protein (SEL-12) with

remarkable sequence similarity to PSENs was iden-

tified (125). Rescue by human PSENs of the sel-12

phenotype in worms (125) and the Notch phenotype

in Psen1 null mice indicated a role for PSENs in

Notch signaling (126,127). Furthermore, PSENs

and APP interact with each other to form stable

complexes (128�130). In neuronal cultures derived

from Psen1�/� null mice, Ab production was

dramatically reduced and accompanied by an accu-

mulation of APP C-terminal fragments (131). As

a- and b-secretase cleavage of APP was not affected,

these results implied that Psen1 is directly involved

in g-secretase cleavage of APP (131). Proteolytic

cleavage of Notch, producing the Notch intracellular

domain (NICD) that is involved in signal transduc-

tion, bore a striking resemblance to the g-secretase

processing of APP, and further studies indicated that

PSEN1 is also required for the ligand-dependent

cleavage of Notch (28,132�134). Taken together,

these observations suggested that PSENs either

function as necessary cofactors or regulators of

g-secretase activity or represent the actual protease

activity. Supportive evidence of the latter was

obtained using mutagenesis of either one of two

highly conserved aspartic acid residues, and using

transition state analog inhibitors directed to the

active site of aspartyl proteases. Both experiments

showed a potent inhibition of g-secretase activity,

similar to that observed in Psen1�/� cells

(29,135,136). These data provided evidence that

PSENs indeed offer the catalytic activity of

g-secretase, and function as diaspartyl proteases.

Even though it was generally accepted that

PSENs are in fact g-secretases, it was noted that

g-secretases exist as high-molecular-weight com-

plexes in the cell suggesting that other proteins are

implicated (137�139). Three PSEN interacting

proteins, nicastrin (NCSTN) (140), presenilin en-

hancer 2 (PEN2) (141), and anterior pharynx-

defective 1 (APH1) (141,142), were identified as

members of the g-secretase complex, and were

shown to be essential components for its activity

(143�145). APH1 and NCSTN are involved in

stabilization of the PSEN holoprotein in the g-

secretase complex, whereas PEN2 is required for

endoproteolytic cleavage of the holoprotein (146).

Thus, the g-secretase complex consists of four

proteins, PSEN1 or 2, NCSTN, APH1 and PEN2,

but PSENs are providing the catalytic active site.

Also, g-secretase was shown to process a series of

different type I transmembrane proteins through a

process nowadays known as ‘regulated intramem-

brane proteolysis’ (RIP) (for review see (147�149)).

Gain or loss of PSEN function. The PSEN mutation

spectrum comprises primarily missense mutations

that are scattered over the protein with some clus-

tering around putative transmembrane domains,

e.g. 63% and 67% in PSEN1 and PSEN2,

respectively (92) (AD Mutation Database). Also

most mutations occur at residues conserved among

human PSENs (95% in PSEN1 and 100% in

PSEN2) and often so among presenilin ortholo-

gues, supporting their functional relevance. Some

but not all mutations interfere with the endopro-

teolytic processing (113,150�152), like mutations

deleting exon 9 (D9) containing the sequence

coding for the endoproteolytic cleavage site

(112). Deletion of exon 9 inhibits endoproteolytic

cleavage and maintains PSEN1 as a stable holo-

protein though functionally active as g-secretase.

Therefore, the pathogenic nature of the D9 muta-

tion is more likely the result of the introduction of

a missense mutation at the junction of exons 8 and

10 (S290C) (153).

That PSEN mutations were involved in the

pathogenic pathway leading to amyloid deposition

was shown by Ab peptide measurements in plasma
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and in conditioned medium from fibroblasts of

PSEN1 and PSEN2 mutation carriers. PSEN muta-

tions resulted in relatively elevated levels of Ab42

compared to Ab40 (154,155). Higher levels of Ab42

were also observed in brains of PSEN1 mutation

carriers compared to sporadic AD patients (156�
158). Further evidence was obtained in transgenic

mouse models or transfected cells overexpressing

mutant PSENs, where a relatively increased produc-

tion of longer Ab species was seen (159�163).

Since the vast majority of mutations identified

in PSENs were missense mutations that lead to an

increase in the Ab42/Ab40 ratio, it was hypothesized

that PSEN mutations conferred their pathogenic

effect by acquiring a toxic gain-of-function. How-

ever, it remained unclear how the many different

missense mutations scattered over the entire protein

were able to cause a similar gain-of-function.

Detailed analyses of different mutant PSENs

showed that some mutations increased the Ab42/

Ab40 ratio by decreasing Ab40 rather than increas-

ing Ab42 (164�168), implying a PSEN loss-of-

function as disease causation mechanism. Also,

APP processing at the o-site was reduced for a

substantial number of mutant PSENs (164�
166,169�171), implying a general loss of g-secre-

tase activity and not only at the g-site. Also

comparable results were obtained for the release

of the intracellular domain of other g-secretase

substrates, such as NICD (134,165,166,169,170,

172�174). In addition to less efficient processing at

the o-site, mutations were shown to alter the

preferred cleavage site, since they often increased

AICD49�99 and/or decreased AICD50�99 production

(35,47), similarly to what was observed for APP

g-site mutations. Together with the current sequen-

tial APP processing model, this could explain the

contradiction of a partial loss-of-function leading to

an increased Ab42/Ab40 ratio, the apparent toxic

gain-of-function. Mutant PSENs that less effi-

ciently process their substrates also cut these

substrates more often at the alternative minor

o-cleavage site. The less active mutant g-secretase

releases Ab42 before it is further processed to Ab39,

resulting in increased amounts of Ab42 even though

there is a general loss of function (37,175,176).

The apparent loss-of-function of PSEN muta-

tions corroborates well the partial rescue of the sel-12

phenotype in worms by mutant PSEN compared to

the wild type (177). Although initial rescue experi-

ments in Psen1 null mice disproved this hypothesis

(178,179), this was likely due to the rather mild

effect on NICD production by the mutant PSEN

(A246E) used (only 20% decreased) (165,178,179).

Also, conditional Psen1 and Psen2 knockout mice

displayed memory impairment, synaptic dysfunc-

tion, and age-dependent neurodegeneration in the

absence of Ab (180), suggesting a role for PSENs in

neuronal survival. Thus loss of PSEN function

might contribute to neurodegeneration.

Also, previously, several genetic studies reported

association of AD with polymorphisms located in the

5? regulatory region of PSEN1 and PSEN2 (181�
184). The risk-conferring allele of the associated

PSEN1 promoter polymorphism (�22C) leads to a

neuron-specific reduction of transcriptional activity

of the PSEN1 promoter, due to alterations in

transcription factor binding sites (185). Moreover,

two rare promoter mutations were identified in

early-onset AD patients, of which one significantly

reduced PSEN1 transcription in neuronal cells

(183). These data also suggested a pathogenic effect

through a loss-of-function mechanism rather than a

toxic gain-of-function.

Other monogenic loci/genes for AD

Novel locus on chromosome 7. The identification of

mutations in APP and PSENs has substantially

contributed to the genetic etiology of familial AD.

Nonetheless, in a significant percentage of familial

AD patients the genetic cause is still unknown (7). In

these families, with early- or late-onset AD, the

disease is often inherited in an autosomal dominant

manner (186�189). In a Dutch family with mean

onset age 66.8 years (range 47�77 years), we

performed a genome-wide screen (186,189) and

identified a novel locus on chromosome 7q36.

Mutation analysis of all 29 known genes in the

5.44 Mb linked region did not unambiguously

identify the underlying gene.

Association with non-AD genes. The mutation

R406W in the microtubule associated protein tau

gene (MAPT), causally related to FTLD (190),

has been identified in several families diagnosed

with clinical AD (190�196). A second mutation

(DK281) was found in a patient with a clinical and

pathological diagnosis of AD (197). Furthermore,

the major tau isoform accumulating in neurofibril-

lary tangles in the patient’s brain corresponded to

the isoform predominantly produced as a result of

the DK281 mutation (197). While most MAPT

mutations are identified in FTLD patients, it is

not surprising to find some in AD patients since

both dementia subtypes share overlapping clinical

symptoms and a differential diagnosis of AD or

FTLD is often difficult to establish particularly in

the later stages of the disease. Furthermore, it has

been suggested that AD and FTLD represent
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disease expressions in one common spectrum

ranging from CAA (amyloid-positive, tau-negative)

over AD (amyloid-positive, tau-positive) and tau-

positive FTLD, to tau-negative, ubiquitin-positive

FTLD (FTLD-U) (198).

Another example is the identification in two late-

onset AD patients of a null mutation (IVS1�5G�C)

in the progranulin gene (PGRN) underlying FTLD-U

pathology (199�201). The intron 1 splice-site muta-

tion IVS1�5G�C was originally identified in a large

Belgian FTLD-U founder family, consisting of 10

branches with 39 patients. Strikingly, the disease in

this large family is characterized by a wide range in

onset age (from 45 to 78 years) and association of the

PGRN mutation with different clinical phenotypes

(FTLD, AD, and Parkinson disease (PD)) (201). A

similar effect was observed for another PGRN founder

mutation (R493X), with 30% of mutation carriers

presenting with memory problems and a clinical

diagnosis of AD in three patients (202). In both

studies postmortem analysis revealed mixed patholo-

gies of FTLD-U and AD (or PD) (201,202). As

PGRN encodes a growth factor, it is conceivable that

the protein could potentially function as a general

neuronal survival factor. Null mutations in PGRN

lower the threshold for neurodegeneration and for-

mation of pathologic lesions of, for example, AD,

occurring because of another disease mechanism or

modifying factor (201). In this context, we identified

several PGRN missense mutations in AD patients that

likely disrupt PGRN protein by interfering with the

characteristic granulin folds of the protein (203).

Interestingly, similar missense mutations were ob-

served in FTLD patients (204), and the correspond-

ing mutant proteins were shown to be less efficiently

secreted and more rapidly degraded (205). Taken

together, these missense mutations might have a

milder effect on the amount of functional protein

produced, increasing an individual’s risk of develop-

ing a neurodegenerative CNS disease at later age.

While these observations are exemplifying the

clinical heterogeneity of mutations in dementia

genes and their contribution to the complexity of

the neurodegeneration process, MAPT or PGRN

mutations remain infrequent causes of clinical diag-

nosed AD. Nevertheless, screening for mutations in

these two genes might be warranted in clinically

diagnosed AD patients in which mutations in known

AD genes are absent.

Searching for AD susceptibility genes

The identification of genes in which mutations are

responsible for monogenic early-onset forms of AD

has contributed substantially to understanding the

molecular mechanisms involved in AD pathogenesis.

Nonetheless, the majority of AD patients develop

the disease at older age and, although there is a

clustering of patients into families, segregation of

AD in these families does not follow a Mendelian

inheritance pattern.

Apolipoprotein E gene (APOE)

A genome-wide linkage study in late-onset AD

families identified a novel locus on chromosome 19

(19q13.1�19q13.3) (206). About the same time the

apolipoprotein E (APOE) was shown to interact with

the Ab peptide in cerebrospinal fluid, and its gene

(APOE) was located near the chromosome 19 linked

region (207). Moreover, APOE had been associated

with senile plaques and neurofibrillary tangles in AD

brains (208), and APOE transcription was upregu-

lated in brains of AD patients (209). Subsequently, it

was shown that one of the three major APOE

isoforms, APOE o4, was overrepresented in familial

late-onset AD patients compared to aged healthy

control individuals (207). The APOE o4 association

was extensively confirmed in both familial as well as

sporadic late-onset AD patients of different ethnic

backgrounds (5,210,211), and later also in early-

onset AD patients (212).

APOE o4 primarily acts by lowering onset age in

a dosage-dependent manner, increasing risk 3 times

in heterozygotes and 15 times in homozygotes (211).

The o2 isoform, on the other hand, was shown to

have a protective effect; however, this could not be

consistently replicated (213). APOE genotype was

also shown to modify onset age in carriers of causal

AD mutations. This was extensively shown for APP

mutations (73,214�217) but also for several PSEN2

mutations (218). No effect could be observed for

PSEN1 mutations (219), with the exception of a

large Colombian PSEN1 pedigree (220). Apart from

the three major protein isoforms, four promoter

variants influencing APOE expression levels were

shown to affect AD risk in several studies (221�226).

Although an APOE o4 independent effect seemed

only present for one variant (�491A/T), this finding

is noteworthy given that APOE o4 affects AD risk in

a dose-dependent manner.

In vitro studies have indicated that the APOE o4
isoform binds Ab peptides with a higher avidity

compared to APOE o3 (227). Furthermore, there is

a strong correlation between the presence of an

APOE o4 allele and a higher Ab burden in the brains

of AD patients (228,229), suggesting that APOE

interacts with Ab in enhancing its deposition

in plaques. This is supported by the observation

that homozygous Apoe knockout (Apoe�/�) mice
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develop fewer and more diffuse, non-fibrillar Ab
deposits (230�232). Some but not all studies asses-

sing the effect of different APOE isoforms on Ab
fibrillization showed that the o4 isoform leads to

increased Ab aggregation in vitro (227,233�236).

Similarly, in vivo studies in Apoe�/� mice indicated

that APOE o4 increased Ab fibrillization and plaques

formation compared to APOE o3 (237,238). Still, it

is possible that APOE exerts its effects through

different mechanisms, e.g. APOE is a major choles-

terol transporter and high cholesterol levels have

been associated with an increased Ab load in animal

models (239,240) and changes in APP processing

(241�243). Thus APOE isoform-specific changes in

cholesterol binding and transport in brain might also

affect plaque formation in AD brains.

Other AD susceptibility loci/genes

Two approaches are being followed to unravel the

genetic etiology of late-onset AD, i.e. hypothesis-

driven candidate gene studies and hypothesis-free

(in terms of biological function or position) genome-

wide analyses. Genome-wide linkage and association

studies in large samples consisting of late-onset AD

families and sib pairs have identified several chro-

mosomal loci harboring potential AD susceptibility

genes (244). In candidate-gene-based studies re-

searchers have focused on genes encoding function-

ally relevant proteins, e.g. proteins that belong to the

g-secretase complex (for example PSEN1 (185,225,

245) or NCSTN (225,246)), regulate APP traffick-

ing (SORL1 (247,248)), or are involved in fibrilliza-

tion or clearance of the Ab peptide (IDE (225,249),

ACE (225,250), PLAU (251), MME (252)). Also

genes that are implicated in other neurodegenerative

diseases (PRNP (253)) or genes located in linked

regions have received attention (www.alzgene.org).

Genetic designs. Over the years genetic studies have

experienced a marked evolution. Early studies

investigated one or few single nucleotide polymorph-

isms (SNPs) at a time. Unless the functional

polymorphism itself was tested, the success of these

studies was limited due to a variety of factors,

including absence of linkage disequilibrium (LD)

between the marker tested and the underlying

functional variant. Rapidly advancing technology

allowed gene-wide studies utilizing the underlying

LD pattern in haplotype-based approaches in order

to capture a maximum of genetic information.

However, positive results obtained in some of these

studies proved difficult to replicate either because

the original finding was a false positive, or it was

attributable to heterogeneity at the genetic, allelic,

mutational, or population level, or it was influenced

by differences in study design or statistical power.

Recently, geneticists went even further in their

search for AD susceptibility genes, analyzing hun-

dreds to thousands of SNPs spread throughout

chromosomal regions showing linkage to AD

(254,255), whole chromosomes (256,257), and

even the complete genome (258�261).

It is not within the scope of this review to go into

detail of the numerous studies on the even so

numerous candidate AD susceptibility genes that

were performed over the last 10�20 years.

A regularly updated overview can be found on the

Alzgene website (www.alzgene.org) (225). Here we

will focus on recent developments in identifying

novel AD risk genes.

Genome-wide linkage studies. Genome-wide linkage

studies in late-onset AD families and sib pairs (244)

(www.alzgene.org) generally used several hundreds

of microsatellite markers spread throughout the

genome. These studies identified a substantial num-

ber of chromosomal regions implicated in AD. Some

of these loci, such as those on chromosomes 9, 10,

12, and 19, were repeatedly linked to AD (244),

suggesting that these loci contained important AD

susceptibility genes. Since multiple genes with small

effect sizes were expected to contribute to late-onset

AD, several groups performed genome-wide screens

in isolated populations (188,261�267). Geographi-

cally and/or culturally isolated populations are as-

sumed to be less genetically heterogeneous, with

disease risk being determined by a smaller number

of genes of which some are enriched in the popula-

tion under study, thus facilitating their identifica-

tion. These studies confirmed several of the loci

identified in outbred populations, for example 1q21

and 1q25 (261), and 10q24 (261,267). Further-

more, they also extended the genetic spectrum with

additional, new genetic loci implicated in AD, for

example 8p12�q22 (262) and 3q22�q24 (261).

Locus- or chromosome-wide association studies. Genetic

approaches based on microsatellite markers gener-

ally identify extended chromosomal regions harbor-

ing a large number of potentially causal genes.

Although many candidate gene studies were per-

formed, especially in the linked regions on chromo-

somes 9, 10, and 12, the proven causal genes have

not yet been found (www.alzgene.org). In a renewed

attempt researchers resorted to fine-mapping by

genotyping large numbers of SNPs across these

regions.

On chromosome 12, analysis of a large number

of SNPs across the linkage region (12p11�13)
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showed that the glyceraldehyde-3-phosphate dehy-

drogenase gene (GAPDH) and some of its para-

logues could be implicated in AD pathogenesis

(254), but decisive arguments for a role of GAPDH

as a risk factor for AD are still awaited. For the

chromosome 10 AD locus, two independent studies

were performed targeting either the locus (10q21.1�
10q25.1; 47 cM) (255) or the whole chromosome

10 (256). Both studies also differed in study design

in terms of ethnicity, stratification for APOE geno-

type, and SNP selection (LD-based versus a gene-

centric approach in which SNPs were selected that

have a higher chance of having a direct biological

effect (e.g. non-synonymous and regulatory var-

iants)). Not surprisingly different genes were identi-

fied, dynamin binding protein gene (DNMBP) (255)

and a gene (LOC439999) encoding a protein similar

to ribosomal protein S3a (RPS3A) (256). Similarly

to chromosome 10, the locus on chromosome 9 was

investigated using a chromosome-wide gene-centric

approach (257), resulting in the identification of

several significant SNPs, with the most significantly

associated SNP located under the 9q22 linkage peak

pointing to the death-associated protein kinase 1

gene (DAPK1).

Although these approaches in identifying risk

genes underlying large linkage and association peaks

provided some insights into novel pathways poten-

tially involved in AD pathogenesis, replication of

these findings in additional independent study

populations proved to be hard (268�271). None-

theless, the DNMBP and GAPDH findings could be

confirmed in independent studies (272,273).

Genome-wide association studies. Locus- and chromo-

some-wide studies balance between a targeted

candidate region approach and a hypothesis-free

approach, as to possible biological pathways leading

to AD. Candidate genes are usually selected to fit

within existing hypotheses, the most prevailing being

the amyloid cascade hypothesis. Several other path-

ways have been suggested, e.g. altered cholesterol

metabolism, impaired axonal transport, increased

oxidative stress, etc. The number of proteins fitting

in existing hypotheses is enormous, making it

practically impossible to analyze all the correspond-

ing genes in detail one by one.

Since high-throughput genotyping platforms per-

mit genotyping of large numbers of SNPs and since

the completion of the human sequence allows study-

ing common genetic variation across the genome,

researchers started to apply genome-wide associa-

tion studies. One of the promises is that this holistic

approach will uncover candidate genes that other-

wise would have escaped attention. The approach

already proved fruitful in other complex genetic

disorders, such as myocardial infarction (274), type

2 diabetes (275,276), and coronary heart disease

(277). In AD, however, achievements are still

limited. Currently two different approaches are

used in AD research, on the one hand there is the

gene-centric approach, utilizing genotype data of a

large number of, potentially functional, SNPs lo-

cated in and around genes (258,278), while the

other consists of an LD-based approach, where

SNPs are selected based upon SNP informativeness

and the LD structure of the population under study

(259,260,279). Although these studies already re-

vealed several new genes and pathways potentially

implicated in AD, they also generated some ques-

tions. It remains to be established whether these

genes can be replicated using independent samples,

as none of the studies performed to date seem to

identify the same genes. Furthermore, genes identi-

fied in locus- or chromosome-wide studies are not

detected in genome-wide studies on the same

samples (254,256�258). In fact, the only gene that

is clearly associated in different study populations

and designs is still APOE.

Conclusions

After more than 20 years of extensive genetic

research in the field of AD, we can conclude that

AD is a complex and genetically heterogeneous

disorder. Most of the insights we have gained so

far came from genetic studies in large multigenera-

tional families in which AD is inherited in an

autosomal dominant manner. Linkage analyses in

these families has led to the identification of three

causal genes (APP, PSEN1, and PSEN2) and one

susceptibility gene (APOE) that are consistently

involved in AD genetic etiology. Yet, there are still

additional AD genes to be identified. There is at

least one autosomal dominant AD family, in which

mutations in the known dementia-causing genes

have been excluded, harboring a causal gene at

chromosome 7q36 (186). For the more common,

generally late-onset form of AD, a large number of

chromosomal regions linked to or associated with

the disease have been discovered, but their under-

lying genes have not yet been unequivocally identi-

fied. As has already been proven in the past with the

identification of APP and the PSENs as causal genes,

the discovery of novel genes could contribute

significantly to our understanding of the disease

process by revealing pathways that could provide

access points for novel therapeutic strategies.

Though much effort has been put into mapping

novel AD genes, the search for genes contributing to
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the risk profile of late-onset AD has been compli-

cated by the many pitfalls of the designs and

techniques used in the past, such as candidate-

gene-based association studies. However, the field

of complex genetics is rapidly evolving, and although

strategies currently used to identify risk genes for AD

(such as locus-, chromosome-, or genome-wide

screens) yielded so far inconsistent data, they are

promising since they have already been successfully

applied in other complex diseases like myocardial

infarction (274), type 2 diabetes (275,276), and

coronary heart disease (277). In these studies much

larger sample sizes are used compared to what is

currently used in genome-wide screens of AD. This

implies that in order to be successful, sample sizes

used in genome-wide screens for identification of

risk alleles with a small effect on the disease, as is

expected for a heterogeneous, complex disorder

such as late-onset AD, should be increased. Further,

as genetic heterogeneity creates a problem in the

reliable identification of novel risk factors, more

effort should go into minimizing heterogeneity by

using populations with fewer founders (isolated

populations). Another way of reducing genetic

heterogeneity can be established by utilizing endo-

phenotypes in genome-wide studies. Here, pheno-

types that are associated with the disease but are

closer to the underlying biology and thus less prone

to other modifying factors, for example environ-

mental influences, are investigated. This strategy was

already proven successful in a genome-wide associa-

tion study on memory performance (280). Also, in

the future, in addition to genotyping larger study

populations and minimizing genetic heterogeneity,

more effort could be put into combining data from

different approaches, such as gene expression data,

genome-wide association studies, and proteomics, in

order to prioritize the number of potentially im-

plicated genes and to discover novel pathways

involved in AD pathogenesis.
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