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ABSTRACT
The particulate matter (PM) is emitted from diverse sources and 
affects the human health very badly. In the past, researchers 
applied different automated computational tools in the predi-
cation of PM. Accurate prediction of PM requires more relevant 
features and feature importance. In this research, we first 
extracted the multimodal features from time domain standard 
deviation average (SDAPM), standard deviation of standard 
deviation (SDSD), standard deviation of particulate matter 
(SDPM), root-mean square of standard deviation (RMSSD), and 
nonlinear dynamical measure wavelet entropy (WE) – Shannon, 
norm, threshold, multiscale entropy based on KD tree (MSEKD), 
and multiscale approximate entropy (MAEnt). We then applied 
the intelligent-based Bayesian inference approach to compute 
the strength of relationship among multimodal features. We 
also computed total incoming and outgoing forces between 
the features (nodes). The results reveal that there was a very 
highly significant correlation (p-value <0.05) between the 
selected nodes. The highest total force was yielded by WE- 
norm followed by SDAPM and SDPM. The association will 
further help to investigate that which extracted features are 
more positively or negatively correlated and associated with 
each other. The results revealed that the proposed methodol-
ogy can further provide deeper insights into computing the 
association among the features.
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Introduction

The human health is severely affected due to the pollutant particulate matters 
(PMs) time series (Ostro, Broadwin, and Lipsett 2000; Weng, Chang, and Lee 
2008). The size of the PMs varies in diamete from few nanometers (nm) to tens 
of micrometers (µm). The types of PMs are PM1:0; PM2:5;PM10. The human 
health is hazardously affected by these PMs due to the variation in distribu-
tion, size, and composition (Ostro, Broadwin, and Lipsett 2000). The ultrafine 
particles (PM1:0;PM2:5) have a more impact on the human health than coarse 
particles (PM10) (Laden et al. 2014; Mar et al. 2006). According to the survey in 
1993, it was observed by the World Bank that about 50% of the diseases are 
spreading due to the poor household environment (Albalak et al. 1999; 
L. P. Naeher et al. 2001). The indoor PMs are inhaled from cigarette smoking, 
cooking, wood burning stoves, and malfunctioning combustion appliances 
(C. K. Lee and Lin 2008; Martínez et al. 2016). The other sources affect the 
human health via respiratory systems (Zhiqiang et al. 2000) such as cough, 
asthma, bronchitis, cancer, fever, bronchial constriction, and obstructive dis-
ease (Repace and Lowrey 1980). Moreover, 90% of the people who are affected 
by the PM are spending most of their time at home rather than outside (Kado 
et al. 1994). Moreover, the people living in the rural areas are using domestic 
wood combustion heaters during cold or moderate weather, which severely 
affect their health (Ancelet et al. 2013; GLASIUS et al. 2006; Grange et al. 2013; 
Molnár and Sallsten 2013; Trompetter et al. 2013). The respiratory symptoms 
and exacerbations especially in children and young adults are associated with 
elevated concentration of ambient PM in wood burning communities (Lipsett, 
Hurley, and Ostro 1997; McGowan et al. 2002; Luke P. Naeher et al. 2007; 
Town 2001). The studies indicate that wood smoke affects the human health in 
a similar way as that of diesel and gasoline. There is a dire need to study the 
health impacts of ambient PM emitted from wood combustion heaters and 
other sources. The research also reveals that wood smoke contains the poly-
cyclic aromatic hydrocarbon compounds having carcinogenic properties, and 
ultimately, the indoor exposure to wood smoke increases the cancer risk 
(Hosgood et al. 2010).

The optimal and modern combustion engines produce the diesel exhaust 
particles that are primarily PM2:5, a substantial component of which are PM1:0. 
These particles are highly complex comprising the core of elemental carbon 
and absorbed organic compounds and small amount of nitrate, sulfate, metal, 
and many trace elements (Wichmann 2007).

The diesel exhaust study is very problematic as the PM of diesel exhaust 
varies in chemical composition and size with respect to the engine type (light 
duty, heavy duty, or method of fuel injection), operating condition of the 
engines (accelerating, decelerating, or idle), and fuel formulation (low/high, 
petroleum-based diesel, sulfur fuel, or biodiesel). These differences are yet 
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unclear that how much they change the toxicity (Matti Maricq 2007; Y. Wang 
et al. 2015). The lifetime of the atmospheric PM ranges from minutes to 
several days. The impact of these particles on health can be of greater extent 
as they age in the atmosphere (Duncan et al. 2008).

There is a literature evidence of possible risks attributed from specific 
source of emission, i.e., domestic wood combustion heaters produce exacer-
bations and respiratory symptoms (Ancelet et al. 2013; GLASIUS et al. 2006; 
Grange et al. 2013; Molnár and Sallsten 2013; Trompetter et al. 2013), respira-
tory morbidity (Andersen et al. 2007), cardiovascular morbidity (Sarnat et al. 
2008), airway inflammation, and compromised lung immunity (Reed et al. 
2004; Seagrave et al. 2005; Zelikoff et al. 2002).

Likewise, the crustal dust produces the health risks including respiratory 
mortality(>75 years of age) (Zauli Sajani et al. 2011), cardiovascular mortality 
(Chan and Ng 2011; de Longueville et al. 2013; Elliott, Henderson, and Wan 
2013; H. Lee et al. 2013, 2014), asthma exacerbation (Kanatani et al. 2010; J.- 
W. Lee and Lee 2014; PARK et al. 2005; C.-H. Wang, Chen, and Lin 2014; Yoo 
et al. 2008), respiratory and COPD morbidity (Chiu et al. 2008; TAM et al. 
2012), pneumonia (Cheng et al. 2008; Griffin 2007), reduced lung function in 
children (Hong et al. 2010), lung inflammation (Ghio et al. 2014; Lei et al. 
2004), and infectious diseases (Goudie 2014; Sprigg et al. 2014; Yang 2006). 
The PMs spreading from diverse sources have a very severe impact on human 
health. With the passage of time, the environment due to the polluted PMs, 
weather environmental changes, huge constructions, increase in motor vehi-
cles, and other sources that are used as means of facilities severely impact our 
health due to spreading the concentration of PMs on diverse means. Thus, if 
no precautionary measures and tools are developed and concerned health-care 
professionals and environmental professionals are provided with scientific 
solutions, there might be severe future impacts and challenges on human 
health.

In the past, researchers utilized traditional machine-learning algorithms. 
However, we need a more comprehensive analysis to determine the associa-
tions and other Bayesian measures to further strengthen our analysis to unfold 
the hidden dynamics for further improving the PM concentration prediction. 
The parametric information from the data in the recent studies has been 
investigated using a probabilistic propagation algorithm (Bayes Rule) by 
applying Bayesian networks (BNs). The degree of uncertainty and associations 
of variables varies from different sources such as numerical data, empirical 
data, and expert opinion to capture the conditional dependencies of a variable 
upon others (Kaikkonen et al. 2021). BNs have successfully been utilized in 
many studies by different researchers such as Kocian et al. (2020), Amaral et al. 
(2019), Laurila-Pant et al. (2019), and Zhang et al. (2019). The causal relation-
ships can be studied between variables, which compute the probabilities of 
a variable when other variables in the model are known. Moreover, the Monte- 
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Carlo analysis (MCA) can be used at random sampling of probability distribu-
tion functions (PDFs) to denote the inputs of Bayesian model to produce 
hundreds or thousands of possible outcomes (Sperotto et al. 2019). Recently, 
BNs have successfully been utilized in many applications ranging from pre-
dicting energy crop yield (Gandhi, Armstrong, and Petkar 2016), prediction of 
coffee rust disease using BNs (Corrales 2015), and sustainable planning and 
management decision (Musango and Peter 2007). The BNs computed the 
interrelation among variables that impacts climate change scenarios in agri-
culture (Ershadi and Seifi 2020). Moreover, recently, Lu et al. (2020) utilized 
BNs to investigate the complex causal interactions between environments and 
plant diseases. Previous studies did not focus on association among features to 
further unfold nonlinear dynamics in order to further improve the health care 
and environmental issues regarding PM time series.

In the present study, we aimed to apply the Bayesian inference (BI) 
approach for comprehensive analysis to unfold the nonlinear and hidden 
dynamics present in the nonlinear and nonstationary indoor and outdoor 
PM time-series data. The PM concentrations have a very severe health impact, 
so there is a dire need to unfold nonlinear hidden dynamics and associations 
among extracted features based on Bayesian artificial intelligence methods so 
that the concerned health professional can take the precautionary measures to 
reduce the mortality risks. We computed the associations and strength of 
relationships among multimodal extracted features. The Bayesian approach 
recently gained its popularity and utilized in many biomedical signal and 
image processing problems. The BI evaluates the posterior probability, 
which can be yielded from a weighted combination of local estimates known 
as likelihood and estimates in surrounding spatial units. Researchers are 
developing intelligent methods based on machine-learning algorithms, 
which require the extraction of most relevant features. Our research objective 
was multifold; first, we computed the multimodal features based on time 
domain, frequency domain, and entropy-based complexity measures. We 
then ranked the features based on EROC value. The higher the ROC value, 
the more important the feature indicates. Second, once we ranked the features, 
we then selected the high-ranked feature as our target node and then further 
computed the detailed Bayesian analysis with other features to further unfold 
the underlying hidden dynamics. We computed the relationship analysis 
among the extracted nodes using mutual information (MI), Kullback– 
Leibler (KL) divergence, and Pearson’s correlation. The strength of relation-
ship was computed using arc analysis with 3D mapping. We then computed 
the parent–child relationship and node force between the nodes. The associa-
tion graph for segment profile analysis was computed for further analysis. 
Moreover, the network performance and significance of prominence were 
computed using tornado diagram. The flow of our work is presented in 
Figure 1. We first took the PM time-series input signal, then extracted the 
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multimodal features, applied the features to BN, and utilized different methods 
for detailed analysis. Finally, the network performance was evaluated using 
different metrics.

The diesel exhaust also produces risks of various pathologies including lung 
and esophageal cancer mortality (Attfield et al. 2012; Silverman et al. 2012), 
respiratory mortality (Achilleos et al. 2017), cardiovascular morbidity (Peng 
et al. 2009), nose and throat irritation (Costa et al. 2014), effects on offspring 
from exposure during pregnancy (Ema et al. 2013; Manners et al. 2014; Weldy 
et al. 2014), atopy, and susceptibility to infection (Acciani et al. 2013; Noah 
et al. 2012; Takahashi et al. 2010).

This study is aimed to predict the PM time series by extracting multimodal 
features from time domain, statistical, and entropy-based complexity mea-
sures by applying BN analysis method. We investigated the network 

Figure 1. Schematic diagram to reflect the flow of work.
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performance including the strength of relationship and node force among the 
nodes (features) using MI, Pearson’s correlation (PC), and KL.

Materials and Methods

Dataset

The dataset of indoor and outdoor PM time series utilized in this study was 
previously utilized by us and is detailed inHussain et al. (2020a).

Feature Extraction

In machine learning, the most important step is to compute the most relevant 
features. Researchers in the past computed the most relevant features. To 
detect the colon cancer, the authors (Ferland et al. 2017; Rathore et al. 2014) 
computed the hybrid features. Recently, Hussain and coworkers computed 
multimodal features and texture features to compute the various pathologies 
in signal and imaging problems (Abbasi et al. 2020; A multi-modal, multi-atlas 
-based approach for Alzheimer detection via machine learning, 28 2018; 
Anjum et al. 2021; Hussain 2020b, 2018; Iqbal et al. 2021; Lal et al. 2021). 
Moreover, Hussain et al. (2020a) computed multimodal features from time 
domain, statistical, and entropy-based features to detect the PM time series. 
Feature extraction is an important step successfully utilized in most of the 
image and signal processing problems (Barbhuiya, Karsh, and Jain 2021; Li, 
Huang, and Srivastava 2021; Xie et al. 2021). We utilized the features from 
time domain, frequency domain, statistical, entropy, and wavelet-based com-
plexity features as detailed by Hussain et al. (2020a).

Feature Ranking Algorithms

The feature ranking algorithm is used to rank the importance of features using 
supervised ranking algorithms. This ranking is based on the scoring values of the 
algorithms (H. Wang, Khoshgoftaar, and Gao 2010). Different ranking algorith-
mic methods including wrapper are utilized (Shakir et al. 2019). Recently, 
MATLAB toolbox with a total of 30 FIR methods have been utilized by Yu et al. 
(2019) to integrate the paves to select the features and diagnose intelligently the 
real-world applications. We computed the feature importance of the multimodal 
features extracted from PM time series. We used EROC to compute the extracted 
feature importance. The EROC was computed as area between the empirical 
receiver operating characteristic curve (EROC) and random classifier slope. The 
higher EROC value indicates the more important feature that contains the most 
important information to further unfold the nonlinear and hidden information of 
the data of interest. After extracting the features, the important step is to apply the 
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feature selection methods to rank the important features (ROFFO et al. 2020; Teng 
et al. 2019; Venkatesh and Anuradha 2019; Yu et al. 2019).

Bayesian Network Analysis

The Bayesian analysis is successfully utilized in various signal and image 
processing applications (Chen et al. 2021; Kottke et al. 2021; Ni, Zhang, and 
Liu 2022; Yarnell et al. 2021). The causal effect and their relationship are 
determined using Bayesian method and directed acyclic graph (DAG) (Pearl 
1986). Consider X = {X1, X2, X3, . . . . . . Xn} a set of m-dimensional variables, 
the BN is defined with couplet X ¼ G;Ph i, where G denotes the DAG and 
P denotes the set of parameters that quantify the network that contains the 
probabilities of each possible value of xi for each variable Xi. Mathematically: 

P Xð Þ ¼ P X1;X2;X3 . . . . . . :;Xnð Þ ¼
Yn

i¼1
P

Xi

Xj ið Þ

 !

Here, Xj ið Þ represents a set of parent variables of Xi for direct acyclic graph 
G. The posterior probability is thus computed using this algorithm through 
inference of variable of interest.

BayesiaLab V10 was employed for detailed analysis (Bayesia 2017). The 
Shannon entropy (Shannon 1948) was computed using: 

H Xð Þ ¼ �
X

xPX
p Xð Þlog2p Xð Þ

The MI algorithm calculates the difference between marginal entropy of the 
target variable and conditional entropy of the predicted variable (Shannon 
1948); mathematically, 

MI X;Yð Þ ¼ H Xð Þ � H
X
Y

� �

which is equivalent to: 

MI X;Yð Þ ¼
X

xPX

X

yPX
p X;Yð Þlog2

p X;Yð Þ

p Xð Þp Yð Þ

Moreover, conditional mutual information (CMI) is defined as: 

CMI X;YjZð Þ ¼
X

xPX

X

yPX

X

yjzPX
p X;YjZð Þlog2

pðX;YjZÞ
p XjZð ÞpðYjZÞ

The p (X, Y) shows joint probability distribution of X and Y. However, p(X) 
and p (Y) indicate the marginal distribution of X and Y, respectively. The 

e2112545-3054 A. A. ALBRAIKAN ET AL.



relevant Gaussian distribution of co-variance matrix variables X1, X2, X3, . . . . 
Xn (Xiao et al. 2016) can be computed as: 

H Xð Þ ¼ log 2πeð Þ
n
2 Cj j

� 1
2 

By applying the mathematical transformation function, the MI and CMI2 can 
be calculated using the following formulae: 

MI X;Yð Þ ¼
1
2

log
C Xð Þ �j jC Xð Þj j

C X;Yð Þj j

To correct the underestimation of conditional Mutual Information 1 (CMI1) 
(Janzing et al. 2013), the CMI2 is used to integrate the interventional prob-
ability and KL divergence (Kullback and Leibler 1951). 

CMI2 X;YjZð Þ ¼
X

X;Y;Z
p X;Y;Zð Þln

p X;Y;Zð Þ

p X;Zð Þ
P

x p YjX;Zð Þp Xð Þ þ p Y;Zð Þ
P

y p XjZ;Yð Þp Yð Þ

Using the Gaussian distribution, the CMI2 can be easily calculated with the 
same hypothesis.

The relationship between the two random variables can be computed using 
the Pearson’s correlation coefficient (PCC) initially proposed by Pearson 
(“VII. Mathematical contributions to the theory of evolution. – III. 
Regression, heredity, and panmixia 1896) to measure the strength and direc-
tion of relationship (J. Lee and Nicewander 1988). PCC is utilized in many 
applications including classification (Tyagi 2015), data analysis (Tyagi 2015), 
biological research (Puth, Neuhäuser, and Ruxton 2014), decision-making and 
clustering (Liao, Xu, and Zeng 2015), and (Puth, Neuhäuser, and Ruxton 
2014) finance analysis (Kim, Kim, and Ergün 2015). Mathematically, it can 
be computed using the following formula. 

rXY ¼

P
Xi; �Xð Þ

P
Yi; �Yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Xi; �Xð Þ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Yi; �Yð Þ
2

q

Here, �X ¼ 1
n
PN

i¼1 Xi represents the mean of X, and �Y ¼ 1
n
PN

i¼1 Yi represents 
the mean of Y.

The coefficient rXY ranges from −1 to 1. The PCC provides the strength of 
linear relationships between the two random variables X and Y. The value 
denotes the degree of relationship, positive sign shows the direct relationship, 
and negative sign denotes the inverse relationship. The zero value shows that 
there is no correlation. The value of jrXY j closer to 1 indicates the stronger 
relationship.
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Statistical Analysis

We computed the multimodal features from indoor and outdoor PM time 
series using MATLAB. We then provided the feature matrix to BayesiaLab for 
further detailed analysis. We conducted the analysis using BayesiaLab 10.0. 
We used the BayesiaLab with minimum description length (MDL) of candi-
date network in its score-based algorithm to compare the BN structure 
(Conrady and Jouffe 2015). The statistical independence test (GKL-test; 
p-values >0.05) was used to validate the connections among the descriptors, 
which were identified by the learning algorithm. The p-values or independence 
probabilities were utilized to check the significance of each individual relation-
ship between the nodes or between the nodes and the target node (Harris et al. 
2014; Thai et al. 2012).

Exploratory Analysis of the Unsupervised Network

The exploratory analysis can be utilized to determine the potential relation-
ship between variables of interest (Moreno-Jiménez et al. 2011). We can 
further explore the global analysis of problem of interest by computing 
influence between nodes and influence of nodes under investigation. We 
build our model by learning unsupervised learning algorithm utilizing max-
imum spanning tree algorithm approach developed in BayesiaLab V10 
(Wilhere 2012). We also computed maximum spanning tree (MWST). 
A lowest value of MDL indicates best trade-off between complexity and 
data representation.

Sensitivity Analysis

A detailed sensitivity analysis was performed to check the relationship 
among the nodes in the selected network. To understand the relationship 
between the nodes, we computed the highest and lowest values of PM, MI, 
and KL, and node force between the nodes was examined globally on the 
network. The probabilistic dependencies were computed using MI between 
the nodes in the network. The tornado plots are used to display the influen-
tial knowledge of each node using sensitivity analysis on probability of each 
descriptor, and maximum strength of individual relationship between the 
nodes and descriptors was computed. The lowest and highest probability 
values for each node are displayed from the tornado plots to achieve hard 
evidence placed on the corresponding descriptor state . The confidence and 
consistency levels of the sensitivity analysis using the BN model are verified 
by validating the model (Goerlandt and Montewka 2015; Hänninen and 
Kujala 2012; Tanackov et al. 2018) to verify different conditions.
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Segment Profile Analysis of Energy

The analysis was also done using segment profile analysis using radar chart for 
normalized mean values conditionally to energy for all other multimodal 
features. The significance was tested using Bayesian test (Best) and NHST 
t-test (a frequentist test). Using NHST t-test, the two-tailed t-test is utilized for 
null hypothesis significance testing. The Bayesian (Best) test is detailed by John 
K. Kruschke (Kruschke 2013), which follow the student’s t-distribution. 
Moreover, 95% confidence interval (CI) is utilized. When the mean values 
are estimated significant, a square is added next to the label.

Results and Discussions

In this study, we first computed the time domain, frequency domain, and 
entropy-based complexity features from PM time-series data. The features 
were ranked using ROC. The SDPM, SDSD, RMSSD, MApEn, RMS, and 
variance yielded the highest ROC (0.4861). For the rest of the analysis, we 
have chosen the SDPM as our target variable.

Figure 2 shows the ranking of multimodal features using ROC values. The 
higher ROC value indicates the more important feature. The higher entropy 
value indicates the more complex and important feature. We extracted the 
features from time domain, frequency domain, and entropy-based complexity 
features from PM time series of indoor and outdoor environment. The 
features are ranked without utilizing any unsupervised or supervised machine- 
learning algorithm. A specific method that ranks the features is based on the 
assigned score values (H. Wang, Khoshgoftaar, and Gao 2010). Finally, based 
on these scores, the features are ranked and the features with redundant 
information are further eliminated for classification. In this study, we ranked 
the multimodal features based on ROC values developed in MATLAB diag-
nostic tool.

Figure 3 depicts the relationship analysis using BI methods including the 
MI, KL, and PC. The bold lines represent the stronger relationship, the lighter 
lines indicate the smaller relationship. The blue color indicates the positive 
relationship, whereas the red color indicates the negative relationship. 
Moreover, the arrows indicate the ðparent ! childÞ relationship. We kept 
our target node as SDPM using MI; probability of occurrence for the state 
≤0.267 (58.33%), state ≤0.597 (37.50%), and state >0.597 (4.17%) with joint 
probability for all states is 100%. The probability distribution with other 
extracted nodes at selected states is depicted in Figure 3 (a–c).

Figure 4 represents the 3D mapping arc analysis to show the relationship 
among the multimodal extracted features. The nodes represent the features 
and lines represent the relationship between the nodes. The strength of 
relationship is denoted by the width of line. The blue color represents the 
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positive relationship, whereas the red color denotes the negative relationship. 
Using the MI, the highest strength of relationship was obtained between the 
nodes WE � LogE!WE � Th; 1:2478ð Þ followed by (SDAPM ! SDPM, 
1.1753), SDAPM !WE � Shannon; 0:9544ð Þ and so on as reflected in 
Figure 4(a). Figure 4(b) shows the association between the nodes using KL. 
The highest strength of relationship was yielded between the nodes 
WE � LogE!WE � Th; 1:2478ð Þ followed by SDAPM! SDPM;ð 1.1753), 
SDAPM!WE � Shannon; 0:9544ð Þ, and so on. Figure 4(c) denotes the 

relationship between nodes using Pearson’s correlation. The highest strength 
of relationship was yielded between the nodes (WE - LogE 
!WE � Th; 0:9693Þ followed by SDAPM! SDPM; � 0:9823ð Þ and so on. 
The highest negative relationship was yielded between the nodes 
SDAPM!WE � Shannon; � 0:9310ð Þ followed by SDAPM!WE�ð

Shannon, – 9186) and so on. All other nodes exhibit the positive relation, 

Figure 2. Feature ranking based on entropy values.
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Figure 3. Relationship analysis using different Bayesian inference approaches such as (a) mutual 
information (MI), (b) Kullback–Leibler (KL) divergence, and (c) Pearson’s correlation by applying the 
unsupervised learning using maximum spanning tree and selecting SDPM as our target node.
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Figure 4. Arc analysis 3D mapping to determine the relationship among the nodes: (a) mutual 
information, (b) Kullback–Leibler (KL) divergence, and (c) Pearson’s correlation.
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where a week relationship was yielded between the nodes cluster WE-norm 
and SDAPM. The strength of relationship using these methods is also reflected 
in Table 1. Moreover, the highly significant results (p-value <0.005) were 
yielded for all ðParent ! childÞ relationships except the last two pairs.

Table 2 reflects the incoming, outgoing, and total force of different extracted 
multimodal features from PM time-series data. The SDAPM node has out-
going force (22.1297), incoming force (0.6082), and total force (2.7379); the 
eWE-Norm node has outgoing force (1.2634), incoming (0.8055), and total 
force (2.0688) and so on. The highest outgoing and total force was yielded by 
the node SDAPM such as 2.1297 and 2.7379, respectively. The highest incom-
ing force was yielded by the node WE-Th (1.2478).

We first extracted the multimodal features of PM time series. We then 
ranked the features before applying the BI approach. The SDAPM was highly 
ranked features measured using EROC and random classifier slope, which was 
selected as our target for further Bayesian analysis. We computed the associa-
tion of top ranked SDAPM feature with other features to further unfold the 
association among the features. There were four states represented by ≤0.267, 
≤0.597, and >0.59 with the highest data points to lowest data points in 
ascending order, respectively, as represented in the Mosaic association graph 
in Figure 5 and Table 3.

Table 1. Parent–child relationship on extracted multimodal features to distinguish the particulate 
matter (indoor and outdoor) time series using mutual information (MI), Kullback–Leibler (KL) 
divergence, and Pearson’s correlation.

Parent Child
KL 

divergence
Relative 
weight

Overall 
contribution

Mutual 
information

Pearson’s 
correlation p-Value

WE-LogE WE-Th 1.2478 1.0000 15.63% 1.2478 0.9693 0.0000
SDAPM SDPM 1.1753 0.9419 14.72% 1.1753 0.9823 0.0000
SDAPM WE-Shannon 0.9544 0.7649 11.96% 0.9544 −0.9186 0.0002
WE-Shannon RMSSD 0.9183 0.7360 11.50% 0.9183 −0.9310 0.0004
RMSSD SDSD 0.8709 0.6979 10.91% 0.8709 0.9618 0.0008
WE-LogE WE-Norm 0.8055 0.6455 10.09% 0.8055 0.8098 0.0022
WE-Th MSEKD 0.7436 0.5959 9.31% 0.7436 0.7797 0.0057
WE-Norm MApEn 0.6551 0.52511 8.21% 0.6551 0.7974 0.0220
WE-Norm SDAPM 0.6082 0.4874 7.62% 0.6082 0.5199 0.0449

Table 2. Node force of extracted multimodal features from particulate time-series data.
Node Outgoing force Incoming force Total force

SDAPM 2.1297 0.6082 2.7379
WE-Norm 1.2634 0.8055 2.0688
WE-LogE 2.0532 0.0000 2.0532
WE-Th 0.7436 1.2478 1.9914
WE-Shannon 0.9183 0.9544 1.8727
RMSSD 0.8709 0.9183 1.7892
SDPM 0.0000 1.1753 1.1753
SDSD 0.0000 0.8709 0.8709
MSEKD 0.0000 0.7436 0.7436
MApEn 0.0000 0.6551 0.6551
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Table 4 reflects the overall analysis of target node SDAPM with other nodes. 
All nodes exhibit the highly significant results.

Figure 6 depicts the analysis of association graph for segment profile 
analysis of top ranked target node with other extracted multimodal features 
using the radar chart, which reflect the distributions based on 1–12 clock 
hours. Figure 6(a) reflects the overall probability, and we used the NHST t-test 
and Bayesian test to find the significance to distinguish with other different 

Figure 5. Analysis of target node energy with other extracted nodes using mosaic graph based on 
selected target node SDPM and predictions of occurrence made against each state ≤0.267, ≤0.597, 
and >0.59.

Table 3. Analysis of target node SDAPM with other 
extracted nodes.

State Purity Marginal probabilities

≤0.267 (1/3) 100% 58.33%
≤0.597 (2/3) 100% 37.50%
>0.597 (3/3) 100% 4.17%
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Table 4. Overall analysis of target node SDAPM with other extracted multimodal features.
Node Mutual information (MI) Normalized MI Relative significance p-value

SDAPM 1.1753 74.15% 1.0000 0.00000
WE-Shannon 0.9544 60.21% 0.8121 0.0002
RMSSD 0.8129 51.28% 0.6917 0.0019
SDSD 0.6991 44.10% 0.5948 0.0112
WE-Norm 0.6082 38.37% 0.5175 0.0449
WE-LogE 0.3453 21.78% 0.2938 0.3525
MApEn 0.3180 20.06% 0.2706 2.098
WE-Th 0.3116 19.65% 0.2651 1.1990
MSEKD 0.2080 13.12% 0.1770 10.764

Figure 6. Association graph of segment profile analysis of SDAPM node with other extracted 
multimodal features using radar chart graph at different selected states: (a) overall and overall with 
selected states (b) ≤ 0.267, (c)  ≤0.597, and (d) >0.597; overall with (e) all selected states.
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states such as (a) ≤0.267, (b) ≤0.597, and (c) >0.597 as reflected in Figure 6(b– 
e). The highest significance using both the tests is reflected by double boxes 
blue and light blue, where the significance with any one test is reflected by 
single box. The node with no box shows no significance at all with any test.

The network performance of the selected target node SDAPM with other 
selected nodes yielded the highest predictions with 100% reliability and pre-
cision for all the selected states as shown in Figure 7(a–c). A relative Gini index 
of 99.49% and ROC index of 100% were obtained as reflected in Figure 7(b–c).

Using the tornado graph as reflected in Figure 8, we visualize the maximum 
deltas in the posterior probabilities of the target states, and hard evidence is set 
on the selected variables. The strong deltas are shown at the top of the graph. 
The highest association was yielded with SDAPM, WE-Shannon, RMSSD, and 
SDSD for state ≤0.267 (58.33%) followed by cluster state ≤0.597 and >0.597 as 
reflected in Figure 8. This indicates that high top ranked SDAPM feature 
prevails high associations with SDPM, WE-Shannon, RMSSD, and SDSD, 
which can be used as a better predictor for improved analysis and mass 
concentration of PM time series.

Most of the studies employed prediction methods. However, after extract-
ing hand-crafted features, ranking of features and computing associations 
among features can further help the concerned health departments and 
researchers to further improve the health-care systems and environments by 
understanding the association and strength of relationship among the 
extracted features. Recently, the researchers developed different methods to 
predict the PMs using classification methods. Hussain et al. (2020b) applied 
machine-learning classification methods to distinguish the indoor PM time 
series. Recently, Mengash et al. (2022) improved the classification accuracy by 
further optimizing the robust machine-learning algorithms and applying 
feature selection methods. Doreswamy, Gad, and Gad (2020) applied regres-
sion methods to forecasting ahead the concentration of PM time series. 
Moreover, Doreswamy, Gad, and M, Y (2021) utilized spatiotemporal cluster-
ing to investigate the PM time series. Hosahalli and Gad (2018) applied 
methods to handle the missing data for weather station data. Likewise, 
Doreswamy, Gad, and Gad (2020) employed Seasonal Autoregressive 
Integrated Moving Average (SARIMA) model to monitor the air quality. 
Most of these studies are utilizing classification, regression, and forecasting 
methods. However, our direction is to unfold the nonlinear hidden dynamics 
from extracted multimodal features from indoor and outdoor PM concentra-
tion time series. We first extracted multimodal features from time domain (to 
capture the time variations), frequency domain (to capture the spectral varia-
tions), entropy, and wavelet-based features (to capture the nonlinear hidden 
dynamics); the same features were previously utilized for classification, which 
provided the 100% classification performance. However, accurate classifica-
tion cannot convey much information for concerned health-care 
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Figure 7. Network performance target evaluation SDAPM node with other selected nodes: (a) 
Occurrence, reliability, and precision report; (b) gain report of state ≤0.267; and (c) ROC index of 
state ≤0.267.
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professionals, instead to provide them the importance of features, along with 
the association among features that can be helpful in making the decision. We 
previously investigated the association among morphological features to pre-
dict the prostate cancer (Lal Hussain et al. 2019). In this study, after ranking 
the features and finding the association among features, we investigated 
a detailed comprehensive analysis of target variables with other computed 
variables as reflected in radar graph that how much important significance was 
found. We also computed the impact in terms of tornado diagram to see the 
overall impact of target variable with other features. The strength of relation-
ship and other important measures further unfold the nonlinear hidden 
dynamics present in the indoor and outdoor PM time series.

Conclusions

Currently, the PMs spreading from diverse sources severely affect the human 
health. The different sources include anthropogenic and organic, chemical, 
and soluble compositions. The researchers are devising different methods to 
study the dynamics of PM time series. This study quantifies the associations 
computed between the multimodal features extracted from PM time-series 
data utilizing BI approach. Previous studies utilized mostly the classification 
and regression methods. Recently, we applied the BI method and computed 
the association among the multimodal features, sensitivity analysis, target 

Figure 8. Tornado diagram of posterior probabilities to compute the significance of SDAPM node 
with all nodes at selected cluster states (≤0.267, ≤0.597, and > 0.597).
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node analysis, and all computed node network analysis for deeper under-
standing the hidden dynamics to further unfold the nonlinear dynamics in PM 
time series. The results reveal that the proposed approach can be very helpful 
for health and environment professionals to take precautionary measures to 
reduce the health risk due to the PM time series. Currently, we have limited 
data of PM time series; however, in future, we will acquire more data from 
diverse sources including construction areas, crush plants, heavy traffic zones, 
farming lands and cultivations, and wooden combustion areas. We will also 
extend our analysis with more in-depth analysis of PM time series. We will 
further apply the segment analysis, target profile analysis and other posterior 
probability methods, tree optimizations, function optimization, and posterior 
mean analysis.

Acknowledgments

Not applicable

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid 
University for funding this work under grant number (RGP 2/42/43). Princess Nourah bint 
Abdulrahman University Researchers Supporting Project number (PNURSP2022R191), 
Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors would 
like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting 
this work by Grant Code: (22UQU4340237DSR46).

References

Abbasi, A. A., L. Hussain, I. A. Awan, I. Abbasi, A. Majid, M. S. A. Nadeem, and Q.-A.- 
A. Chaudhary. 2020. Detecting prostate cancer using deep learning convolution neural 
network with transfer learning approach. Cognitive Neurodynamics 14 (4):523–33. doi:10. 
1007/s11571-020-09587-5.

Acciani, T. H., E. B. Brandt, G. K. Khurana Hershey, and T. D. Le Cras. 2013. Diesel exhaust 
particle exposure increases severity of allergic asthma in young mice. Clinical & 
Experimental Allergy 43 (12):1406–18. doi:10.1111/cea.12200.

Achilleos, S., M.-A. Kioumourtzoglou, C.-D. Wu, J. D. Schwartz, P. Koutrakis, and 
S. I. Papatheodorou. 2017. Acute effects of fine particulate matter constituents on mortality: 
A systematic review and meta-regression analysis. Environment International 109:89–100. 
doi:10.1016/j.envint.2017.09.010.

APPLIED ARTIFICIAL INTELLIGENCE e2112545-3067

https://doi.org/10.1007/s11571-020-09587-5
https://doi.org/10.1007/s11571-020-09587-5
https://doi.org/10.1111/cea.12200
https://doi.org/10.1016/j.envint.2017.09.010


Albalak, R., G. J. Keeler, A. R. Frisancho, and M. Haber. 1999. Assessment of PM10 concen-
trations from domestic biomass fuel combustion in two rural Bolivian highland villages. 
Environmental Science and Technology 33 (15):2505–09. doi:10.1021/es981242q.

Amaral, C. B. D., G. H. F. D. Oliveira, K. Eghrari, R. Buzinaro, and G. V. Môro. 2019. Bayesian 
network: A simplified approach for environmental similarity studies on maize. Crop 
Breeding and Applied Biotechnology 19 (1):70–76. doi:10.1590/1984-70332019v19n1a10.

Ancelet, T., P. K. Davy, W. J. Trompetter, A. Markwitz, and D. C. Weatherburn. 2013. 
Carbonaceous aerosols in a wood burning community in rural New Zealand. Atmospheric 
Pollution Research 4 (3):245–49. doi:10.5094/APR.2013.026.

Andersen, Z. J., P. Wahlin, O. Raaschou-Nielsen, T. Scheike, and S. Loft. 2007. Ambient 
particle source apportionment and daily hospital admissions among children and elderly 
in Copenhagen. Journal of Exposure Science & Environmental Epidemiology 17 (7):625–36. 
doi:10.1038/sj.jes.7500546.

Anjum, S., L. Hussain, M. Ali, M. H. Alkinani, W. Aziz, S. Gheller, A. A. Abbasi, A. R. Marchal, 
H. Suresh, and T. Q. Duong. 2021. Detecting brain tumors using deep learning convolu-
tional neural network with transfer learning approach. International Journal of Imaging 
Systems and Technology 32 (February):1–17. doi:10.1002/ima.22641.

Asim, Y., Raza, B., Malik, A. K., Rathore, S., Hussain, L., & Iftikhar, M. A. 2018. A multi-modal, 
multi-atlas-based approach for Alzheimer detection via machine learning. International 
Journal of Imaging Systems and Technology 28(2), 113-123.

Attfield, M. D., P. L. Schleiff, J. H. Lubin, A. Blair, P. A. Stewart, R. Vermeulen, J. B. Coble, and 
D. T. Silverman. 2012. The diesel exhaust in miners study: A cohort mortality study with 
emphasis on lung cancer. JNCI: Journal of the National Cancer Institute 104 (11):869–83. 
doi:10.1093/jnci/djs035.

Barbhuiya, A. A., R. K. Karsh, and R. Jain. 2021. CNN based feature extraction and classifica-
tion for sign language. Multimedia Tools and Applications 80 (2):3051–69. doi:10.1007/ 
s11042-020-09829-y.

Bayesia, S. C. (2017). BayesiaLab7. Bayesia USA 305 Lockhart Court Franklin, TN 37069 USA.
Chan, -C.-C., and H.-C. Ng. 2011. A case-crossover analysis of Asian dust storms and mortality 

in the downwind areas using 14-year data in Taipei. Science of the Total Environment 410- 
411 (410– 411):47–52. doi:10.1016/j.scitotenv.2011.09.031.

Chen, D., D. Wang, Y. Zhu, and Z. Han. 2021. Digital twin for federated analytics using 
a Bayesian approach. IEEE Internet of Things Journal 8 (22):16301–12. doi:10.1109/JIOT. 
2021.3098692.

Cheng, M.-F., S.-C. Ho, H.-F. Chiu, T.-N. Wu, P.-S. Chen, and C.-Y. Yang. 2008. Consequences 
of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, 
Taiwan. Journal of Toxicology and Environmental Health, Part A 71 (19):1295–99. doi:10. 
1080/15287390802114808.

Chiu, H.-F., -M.-M. Tiao, S.-C. Ho, H.-W. Kuo, T.-N. Wu, and C.-Y. Yang. 2008. Effects of 
Asian dust storm events on hospital admissions for chronic obstructive pulmonary 
disease in Taipei, Taiwan. Inhalation Toxicology 20 (9):777–81. doi:10.1080/ 
08958370802005308.

Conrady, S., and L. Jouffe. 2015. Bayesian networks and BayesiaLab: A practical introduction for 
researchers. Franklin: Bayesia USA.

Corrales, D. C. 2015. Toward detecting crop diseases and pest by supervised learning. 
Ingenieria Y Universidad 19 (1):207. doi:10.11144/Javeriana.iyu19-1.tdcd.

Costa, S., J. Ferreira, C. Silveira, C. Costa, D. Lopes, H. Relvas, C. Borrego, P. Roebeling, 
A. I. Miranda, and J. Paulo Teixeira. 2014. Integrating health on air quality assessment— 
Review report on health risks of two major european outdoor air pollutants: PM and NO 2. 

e2112545-3068 A. A. ALBRAIKAN ET AL.

https://doi.org/10.1021/es981242q
https://doi.org/10.1590/1984-70332019v19n1a10
https://doi.org/10.5094/APR.2013.026
https://doi.org/10.1038/sj.jes.7500546
https://doi.org/10.1002/ima.22641
https://doi.org/10.1093/jnci/djs035
https://doi.org/10.1007/s11042-020-09829-y
https://doi.org/10.1007/s11042-020-09829-y
https://doi.org/10.1016/j.scitotenv.2011.09.031
https://doi.org/10.1109/JIOT.2021.3098692
https://doi.org/10.1109/JIOT.2021.3098692
https://doi.org/10.1080/15287390802114808
https://doi.org/10.1080/15287390802114808
https://doi.org/10.1080/08958370802005308
https://doi.org/10.1080/08958370802005308
https://doi.org/10.11144/Javeriana.iyu19-1.tdcd


Journal of Toxicology and Environmental Health, Part B 17 (6):307–40. doi:10.1080/ 
10937404.2014.946164.

de Longueville, F., P. Ozer, S. Doumbia, and S. Henry. 2013. Desert dust impacts on human 
health: An alarming worldwide reality and a need for studies in West Africa. International 
Journal of Biometeorology 57 (1):1–19. doi:10.1007/s00484-012-0541-y.

Doreswamy, H. K. K. S., I. Gad, and I. Gad. 2020. Time series analysis for prediction of PM 2.5 
using seasonal autoregressive integrated moving average (Sarima) model on Taiwan air 
quality monitoring network data. Journal of Computational and Theoretical Nanoscience 
17 (9):3964–69. doi:10.1166/jctn.2020.8997.

Doreswamy, K. S., H. Gad, and K. M, Y. (2021). Spatio-temporal clustering analysis for air 
pollution particulate matter (pm 2.5) using a deep learning model. 2021 International 
Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater 
Noida, India, 529–35. 10.1109/ICCCIS51004.2021.9397129

Duncan, B. N., J. J. West, Y. Yoshida, A. M. Fiore, and J. R. Ziemke. 2008. The influence of 
European pollution on ozone in the near East and Northern Africa. Atmospheric Chemistry 
and Physics 8 (8):2267–83. doi:10.5194/acp-8-2267-2008.

Elliott, C. T., S. B. Henderson, and V. Wan. 2013. Time series analysis of fine particulate matter 
and asthma reliever dispensations in populations affected by forest fires. Environmental 
Health 12 (1):11. doi:10.1186/1476-069X-12-11.

Ema, M., M. Naya, M. Horimoto, and H. Kato. 2013. Developmental toxicity of diesel exhaust: 
A review of studies in experimental animals. Reproductive Toxicology 42:1–17. doi:10.1016/j. 
reprotox.2013.06.074.

Ershadi, M. M., and A. Seifi. 2020. An efficient Bayesian network for differential diagnosis using 
experts’ knowledge. International Journal of Intelligent Computing and Cybernetics 
13 (1):103–26. doi:10.1108/IJICC-10-2019-0112.

Ferland, R. J., J. Smith, D. Papandrea, J. Gracias, L. Hains, S. B. Kadiyala, B. O’Brien, E. Y. Kang, 
B. S. Beyer, and B. J. Herron. 2017. Multidimensional genetic analysis of repeated seizures in 
the hybrid mouse diversity panel reveals a novel epileptogenesis susceptibility locus. G3 
(Bethesda Md) g3.117.042234. doi:10.1534/g3.117.042234.

Gandhi, N., L. J. Armstrong, and O. Petkar (2016). Predicting rice crop yield using Bayesian 
networks. 2016 International Conference on Advances in Computing, Communications and 
Informatics (ICACCI), Jaipur, India, 795–99. 10.1109/ICACCI.2016.7732143

Ghio, A. J., S. T. Kummarapurugu, H. Tong, J. M. Soukup, L. A. Dailey, E. Boykin, M. Ian 
Gilmour, P. Ingram, V. L. Roggli, H. L. Goldstein, et al. 2014. Biological effects of desert dust 
in respiratory epithelial cells and a murine model. Inhalation Toxicology 26 (5):299–309. 
doi:10.3109/08958378.2014.888109.

GLASIUS, M., M. Ketzel, P. WAHLIN, B. Jensen, J. Monster, R. Berkowicz, and F. Palmgren. 
2006. Impact of wood combustion on particle levels in a residential area in Denmark. 
Atmospheric Environment 40 (37):7115–24. doi:10.1016/j.atmosenv.2006.06.047.

Goerlandt, F., and J. Montewka. 2015. Maritime transportation risk analysis: Review and 
analysis in light of some foundational issues. Reliability Engineering & System Safety 
138:115–34. doi:10.1016/j.ress.2015.01.025.

Goudie, A. S. 2014. Desert dust and human health disorders. Environment International 
63:101–13. doi:10.1016/j.envint.2013.10.011.

Grange, S. K., J. A. Salmond, W. J. Trompetter, P. K. Davy, and T. Ancelet. 2013. Effect of 
atmospheric stability on the impact of domestic wood combustion to air quality of a small 
urban township in winter. Atmospheric Environment 70:28–38. doi:10.1016/j.atmosenv. 
2012.12.047.

APPLIED ARTIFICIAL INTELLIGENCE e2112545-3069

https://doi.org/10.1080/10937404.2014.946164
https://doi.org/10.1080/10937404.2014.946164
https://doi.org/10.1007/s00484-012-0541-y
https://doi.org/10.1166/jctn.2020.8997
https://doi.org/10.1109/ICCCIS51004.2021.9397129
https://doi.org/10.5194/acp-8-2267-2008
https://doi.org/10.1186/1476-069X-12-11
https://doi.org/10.1016/j.reprotox.2013.06.074
https://doi.org/10.1016/j.reprotox.2013.06.074
https://doi.org/10.1108/IJICC-10-2019-0112
https://doi.org/10.1534/g3.117.042234
https://doi.org/10.1109/ICACCI.2016.7732143
https://doi.org/10.3109/08958378.2014.888109
https://doi.org/10.1016/j.atmosenv.2006.06.047
https://doi.org/10.1016/j.ress.2015.01.025
https://doi.org/10.1016/j.envint.2013.10.011
https://doi.org/10.1016/j.atmosenv.2012.12.047
https://doi.org/10.1016/j.atmosenv.2012.12.047


Griffin, D. W. 2007. Atmospheric movement of microorganisms in clouds of desert dust and 
implications for human health. Clinical Microbiology Reviews 20 (3):459–77. doi:10.1128/ 
CMR.00039-06.

Hänninen, M., and P. Kujala. 2012. Influences of variables on ship collision probability in 
a Bayesian belief network model. Reliability Engineering & System Safety 102:27–40. doi:10. 
1016/j.ress.2012.02.008.

Harris, M., K. Bhuvaneshwar, T. Natarajan, L. Sheahan, D. Wang, M. G. Tadesse, 
I. Shoulson, R. Filice, K. Steadman, M. J. Pishvaian, et al. 2014. Pharmacogenomic 
characterization of gemcitabine response – A framework for data integration to enable 
personalized medicine. Pharmacogenetics and Genomics 24 (2):81–93. doi:10.1097/FPC. 
0000000000000015.

Hong, Y.-C., X.-C. Pan, S.-Y. Kim, K. Park, E.-J. Park, X. Jin, S.-M. Yi, Y.-H. Kim, C.-H. Park, 
S. Song, et al. 2010. Asian dust storm and pulmonary function of school children in Seoul. 
Science of the Total Environment 408 (4):754–59. doi:10.1016/j.scitotenv.2009.11.015.

Hosahalli, D., and I. Gad (2018). A generic approach of filling missing values in NCDC weather 
stations data. 2018 International Conference on Advances in Computing, Communications 
and Informatics (ICACCI), Bangalore, India, 143–49. 10.1109/ICACCI.2018.8554394

Hosgood, H. D., P. Boffetta, S. Greenland, Y.-C. A. Lee, J. McLaughlin, A. Seow, E. J. Duell, 
A. S. Andrew, D. Zaridze, N. Szeszenia-Dabrowska, et al. 2010. In-home coal and wood use 
and lung cancer risk: a pooled analysis of the international lung cancer consortium. 
Environmental Health Perspectives 118 (12):1743–47. doi:10.1289/ehp.1002217.

Hussain, L., A. Ali, S. Rathore, S. Saeed, A. Idris, M. U. Usman, M. A. Iftikhar, and D. Y. Suh. 
2019. Applying Bayesian network approach to determine the association between morpho-
logical features extracted from prostate cancer images. IEEE Access 7:1586–601. doi:10.1109/ 
ACCESS.2018.2886644.

Hussain, L., W. Aziz, S. Saeed, I. A. Awan, A. A. Abbasi, and N. Maroof. 2020a. Arrhythmia 
detection by extracting hybrid features based on refined Fuzzy entropy (FuzEn) approach 
and employing machine learning techniques. Waves in Random and Complex Media 30(4. 
doi:10.1080/17455030.2018.1554926.

Hussain, L., W. Aziz, S. Saeed, M. Rafique, M. S. A. Nadeem, S.-O. Shim, S. Aftar, and J.- 
R. Pirzada. 2020a. Extracting mass concentration time series features for classification of 
indoor and outdoor atmospheric particulates. Acta Geophysica 68 (3):945–63. doi:10.1007/ 
s11600-020-00443-y.

Hussain, L., W. Aziz, S. Saeed, M. Rafique, M. S. A. Nadeem, S.-O. Shim, S. Aftar, and J.- 
R. Pirzada. 2020b. Extracting mass concentration time series features for classification of 
indoor and outdoor atmospheric particulates. Acta Geophysica 68 (3):945–63. doi:10.1007/ 
s11600-020-00443-y.

Hussain, L., K. J. Lone, I. A. Awan, A. A. Abbasi, and J.-R. Pirzada. 2020b. Detecting congestive 
heart failure by extracting multimodal features with synthetic minority oversampling tech-
nique (SMOTE) for imbalanced data using robust machine learning techniques. Waves in 
Random and Complex Media 1–24. doi:10.1080/17455030.2020.1810364.

Hussain, L., S. Saeed, I. A. Awan, and A. Idris. 2018. Multiscaled complexity analysis of EEG 
epileptic seizure using entropy-based techniques. Archives of Neuroscience 5 (1):1–11. doi:10. 
5812/archneurosci.61161.

Iqbal, S., G. F. Siddiqui, A. Rehman, L. Hussain, T. Saba, U. Tariq, and A. A. Abbasi. 2021. 
Prostate cancer detection using deep learning and traditional techniques. IEEE Access 
9:27085–100. doi:10.1109/ACCESS.2021.3057654.

Janzing, D., D. Balduzzi, M. Grosse-Wentrup, and B. Schölkopf. 2013. Quantifying causal 
influences. Annals of Statistics 41 (5):2324–58. doi:10.1214/13-AOS1145.

e2112545-3070 A. A. ALBRAIKAN ET AL.

https://doi.org/10.1128/CMR.00039-06
https://doi.org/10.1128/CMR.00039-06
https://doi.org/10.1016/j.ress.2012.02.008
https://doi.org/10.1016/j.ress.2012.02.008
https://doi.org/10.1097/FPC.0000000000000015
https://doi.org/10.1097/FPC.0000000000000015
https://doi.org/10.1016/j.scitotenv.2009.11.015
https://doi.org/10.1109/ICACCI.2018.8554394
https://doi.org/10.1289/ehp.1002217
https://doi.org/10.1109/ACCESS.2018.2886644
https://doi.org/10.1109/ACCESS.2018.2886644
https://doi.org/10.1080/17455030.2018.1554926
https://doi.org/10.1007/s11600-020-00443-y
https://doi.org/10.1007/s11600-020-00443-y
https://doi.org/10.1007/s11600-020-00443-y
https://doi.org/10.1007/s11600-020-00443-y
https://doi.org/10.1080/17455030.2020.1810364
https://doi.org/10.5812/archneurosci.61161
https://doi.org/10.5812/archneurosci.61161
https://doi.org/10.1109/ACCESS.2021.3057654
https://doi.org/10.1214/13-AOS1145


Kado, N. Y., S. D. Colome, M. T. Kleinman, D. P. H. Hsieh, P. Jaques, N. Y. Kado, 
S. D. Colome, M. T. Kleinman, D. P. H. Hsieh, P. Jaques, et al. 1994. Indoor-outdoor 
concentrations and correlations of PM10-associated mutagenic activity in nonsmokers’ and 
asthmatics’ homes. Environmental Science and Technology 28 (6):1073–78. doi:10.1021/ 
es00055a016.

Kaikkonen, L., T. Parviainen, M. Rahikainen, L. Uusitalo, and A. Lehikoinen. 2021. Bayesian 
networks in environmental risk assessment: A review. Integrated Environmental Assessment 
and Management 17 (1):62–78. doi:10.1002/ieam.4332.

Kanatani, K. T., I. Ito, W. K. Al-Delaimy, Y. Adachi, W. C. Mathews, and J. W. Ramsdell. 2010. 
Desert dust exposure is associated with increased risk of asthma hospitalization in children. 
American Journal of Respiratory and Critical Care Medicine 182 (12):1475–81. doi:10.1164/ 
rccm.201002-0296OC.

Kim, Y., T. H. Kim, and T. Ergün. 2015. The instability of the pearson correlation coefficient in 
the presence of coincidental outliers. Finance Research Letters 13:243–57. doi:10.1016/j.frl. 
2014.12.005.

Kocian, A., D. Massa, S. Cannazzaro, L. Incrocci, S. Di Lonardo, P. Milazzo, and S. Chessa. 
2020. Dynamic Bayesian network for crop growth prediction in greenhouses. Computers and 
Electronics in Agriculture 169:105167. doi:10.1016/j.compag.2019.105167.

Kottke, D., M. Herde, C. Sandrock, D. Huseljic, G. Krempl, and B. Sick. 2021. Toward optimal 
probabilistic active learning using a Bayesian approach. Machine Learning 110 (6):1199–231. 
doi:10.1007/s10994-021-05986-9.

Kruschke, J. K. 2013. Bayesian estimation supersedes the t test. Journal of Experimental 
Psychology: General 142 (2):573–603. doi:10.1037/a0029146.

Kullback, S., and R. A. Leibler. 1951. On information and sufficiency. The Annals of 
Mathematical Statistics 22 (1):79–86. doi:10.1214/aoms/1177729694.

Laden, F., L. M. Neas, D. W. Dockery, and J. Schwartz. 2014. Association of fine particulate 
matter from different sources with daily mortality in six association of fine particulate matter 
from different sources with daily mortality in six U . S . Cities 108 (10):941–47. doi:10.1289/ 
ehp.00108941.

Lal, H., M. S. Almaraashi, W. Aziz, N. Habib, and S.-U.-R. Saif Abbasi. 2021. Machine 
learning-based lungs cancer detection using reconstruction independent component analy-
sis and sparse filter features. Waves in Random and Complex Media 1–26. doi:10.1080/ 
17455030.2021.1905912.

Laurila-Pant, M., S. Mäntyniemi, R. Venesjärvi, and A. Lehikoinen. 2019. Incorporating 
stakeholders’ values into environmental decision support: A Bayesian belief network 
approach. Science of the Total Environment 697:134026. doi:10.1016/j.scitotenv.2019.134026.

Lee, H., Y. Honda, Y.-H. Lim, Y. L. Guo, M. Hashizume, and H. Kim. 2014. Effect of Asian dust 
storms on mortality in three Asian cities. Atmospheric Environment 89:309–17. doi:10.1016/ 
j.atmosenv.2014.02.048.

Lee, H., H. Kim, Y. Honda, Y.-H. Lim, and S. Yi. 2013. Effect of Asian dust storms on daily 
mortality in seven metropolitan cities of Korea. Atmospheric Environment 79:510–17. doi:10. 
1016/j.atmosenv.2013.06.046.

Lee, J.-W., and -K.-K. Lee. 2014. Effects of Asian dust events on daily asthma patients in Seoul, 
Korea. Meteorological Applications 21 (2):202–09. doi:10.1002/met.1351.

Lee, C. K., and S. C. Lin. 2008. Chaos in air pollutant concentration (APC) time series. Aerosol 
and Air Quality Research 8 (4):381–91. doi:10.4209/aaqr.2008.09.0039.

Lee, J., and W. A. Nicewander. 1988. Thirteen ways to look at the correlation coefficient. The 
American Statistician 42 (1):59–66.

Lei, Y.-C., -C.-C. Chan, P.-Y. Wang, C.-T. Lee, and T.-J. Cheng. 2004. Effects of Asian dust 
event particles on inflammation markers in peripheral blood and bronchoalveolar lavage in 

APPLIED ARTIFICIAL INTELLIGENCE e2112545-3071

https://doi.org/10.1021/es00055a016
https://doi.org/10.1021/es00055a016
https://doi.org/10.1002/ieam.4332
https://doi.org/10.1164/rccm.201002-0296OC
https://doi.org/10.1164/rccm.201002-0296OC
https://doi.org/10.1016/j.frl.2014.12.005
https://doi.org/10.1016/j.frl.2014.12.005
https://doi.org/10.1016/j.compag.2019.105167
https://doi.org/10.1007/s10994-021-05986-9
https://doi.org/10.1037/a0029146
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1289/ehp.00108941
https://doi.org/10.1289/ehp.00108941
https://doi.org/10.1080/17455030.2021.1905912
https://doi.org/10.1080/17455030.2021.1905912
https://doi.org/10.1016/j.scitotenv.2019.134026
https://doi.org/10.1016/j.atmosenv.2014.02.048
https://doi.org/10.1016/j.atmosenv.2014.02.048
https://doi.org/10.1016/j.atmosenv.2013.06.046
https://doi.org/10.1016/j.atmosenv.2013.06.046
https://doi.org/10.1002/met.1351
https://doi.org/10.4209/aaqr.2008.09.0039


pulmonary hypertensive rats. Environmental Research 95 (1):71–76. doi:10.1016/S0013- 
9351(03)00136-1.

Li, W., Q. Huang, and G. Srivastava. 2021. Contour feature extraction of medical image based 
on multi-threshold optimization. Mobile Networks and Applications 26 (1):381–89. doi:10. 
1007/s11036-020-01674-5.

Liao, H., Z. Xu, and X. J. Zeng. 2015. Novel correlation coefficients between hesitant fuzzy sets 
and their application in decision making. Knowledge-Based Systems 82:115–27. doi:10.1016/ 
j.knosys.2015.02.020.

Lipsett, M., S. Hurley, and B. Ostro. 1997. Air pollution and emergency room visits for asthma 
in Santa Clara County, California. Environmental Health Perspectives 105 (2):216–22. doi:10. 
1289/ehp.97105216.

Lu, W., N. K. Newlands, O. Carisse, D. E. Atkinson, and A. J. Cannon. 2020. Disease risk 
forecasting with Bayesian learning networks: Application to grape powdery mildew 
(Erysiphe necator) in Vineyards. Agronomy 10 (5):622. doi:10.3390/agronomy10050622.

Manners, S., R. Alam, D. A. Schwartz, and M. M. Gorska. 2014. A mouse model links asthma 
susceptibility to prenatal exposure to diesel exhaust. Journal of Allergy and Clinical 
Immunology 134 (1):63–72.e7. doi:10.1016/j.jaci.2013.10.047.

Mar, T. F., K. Ito, J. Q. Koenig, T. V. Larson, D. J. Eatough, R. C. Henry, E. Kim, F. Laden, 
R. Lall, L. Neas, et al. 2006. PM source apportionment and health effects. 3. Investigation of 
inter-method variations in associations between estimated source contributions of PM2.5 
and daily mortality in Phoenix, AZ. Journal of Exposure Science and Environmental 
Epidemiology 16 (4):311–20. doi:10.1038/sj.jea.7500465.

Martínez, L., S. M. Monsalve, K. Yohannessen Vásquez, S. A. Orellana, J. K. Vergara, 
M. M. Mateo, R. C. Salazar, M. Fuentes Alburquenque, A. M. Alcaíno, R. Torres, et al. 
2016. Indoor-outdoor concentrations of fine particulate matter in school building micro-
environments near a mine tailing deposit. AIMS Environmental Science 3 (4):752–64. doi:10. 
3934/environsci.2016.4.752.

Matti Maricq, M. 2007. Chemical characterization of particulate emissions from diesel 
engines: A review. Journal of Aerosol Science 38 (11):1079–118. doi:10.1016/j.jaerosci. 
2007.08.001.

McGowan, J. A., P. N. Hider, E. Chacko, and G. I. Town. 2002. Particulate air pollution and 
hospital admissions in Christchurch, New Zealand. Australian and New Zealand Journal of 
Public Health 26 (1):23–29. doi:10.1111/j.1467-842X.2002.tb00266.x.

Mengash, H. A., L. Hussain, H. Mahgoub, A. Al-Qarafi, M. K. Nour, R. Marzouk, S. A. Qureshi, 
and A. M. Hilal. 2022. Smart cities-based improving atmospheric particulate matters pre-
diction using chi-square feature selection methods by employing machine learning 
techniques. Applied Artificial Intelligence 36 (1). doi: 10.1080/08839514.2022.2067647.

Molnár, P., and G. Sallsten. 2013. Contribution to PM2.5 from domestic wood burning in 
a small community in Sweden. Environmental Science: Processes & Impacts 15 (4):833. 
doi:10.1039/c3em30864b.

Moreno-Jiménez, E., C. García-Gómez, A. L. Oropesa, E. Esteban, A. Haro, R. Carpena-Ruiz, 
J. V. Tarazona, J. M. Peñalosa, and M. D. Fernández. 2011. Screening risk assessment tools 
for assessing the environmental impact in an abandoned pyritic mine in Spain. Science of the 
Total Environment 409 (4):692–703. doi:10.1016/j.scitotenv.2010.10.056.

Musango, J. K., and C. Peter. 2007. A Bayesian approach towards facilitating climate change 
adaptation research on the South African agricultural sector. Agrekon 46 (2):245–59. doi:10. 
1080/03031853.2007.9523770.

Naeher, L. P., M. Brauer, M. Lipsett, J. T. Zelikoff, C. D. Simpson, J. Q. Koenig, and K. R. Smith. 
2007. Woodsmoke health effects: A review. Inhalation Toxicology 19 (1):67–106. doi:10. 
1080/08958370600985875.

e2112545-3072 A. A. ALBRAIKAN ET AL.

https://doi.org/10.1016/S0013-9351(03)00136-1
https://doi.org/10.1016/S0013-9351(03)00136-1
https://doi.org/10.1007/s11036-020-01674-5
https://doi.org/10.1007/s11036-020-01674-5
https://doi.org/10.1016/j.knosys.2015.02.020
https://doi.org/10.1016/j.knosys.2015.02.020
https://doi.org/10.1289/ehp.97105216
https://doi.org/10.1289/ehp.97105216
https://doi.org/10.3390/agronomy10050622
https://doi.org/10.1016/j.jaci.2013.10.047
https://doi.org/10.1038/sj.jea.7500465
https://doi.org/10.3934/environsci.2016.4.752
https://doi.org/10.3934/environsci.2016.4.752
https://doi.org/10.1016/j.jaerosci.2007.08.001
https://doi.org/10.1016/j.jaerosci.2007.08.001
https://doi.org/10.1111/j.1467-842X.2002.tb00266.x
https://doi.org/10.1080/08839514.2022.2067647
https://doi.org/10.1039/c3em30864b
https://doi.org/10.1016/j.scitotenv.2010.10.056
https://doi.org/10.1080/03031853.2007.9523770
https://doi.org/10.1080/03031853.2007.9523770
https://doi.org/10.1080/08958370600985875
https://doi.org/10.1080/08958370600985875


Naeher, L. P., K. R. Smith, B. P. Leaderer, L. Neufeld, and D. T. Mage. 2001. Carbon monoxide 
as a tracer for assessing exposures to particulate matter in wood and gas cookstove house-
holds of highland Guatemala. Environmental Science and Technology 35 (3):575–81. doi:10. 
1021/es991225g.

Ni, Y.-C., Q.-W. Zhang, and J.-F. Liu. 2022. Dynamic performance investigation of a long-span 
suspension bridge using a Bayesian approach. Mechanical Systems and Signal Processing 
168:108700. doi:10.1016/j.ymssp.2021.108700.

Noah, T. L., H. Zhou, H. Zhang, K. Horvath, C. Robinette, M. Kesic, M. Meyer, D. Diaz- 
Sanchez, and I. Jaspers. 2012. Diesel exhaust exposure and nasal response to attenuated 
influenza in normal and allergic volunteers. American Journal of Respiratory and Critical 
Care Medicine 185 (2):179–85. doi:10.1164/rccm.201103-0465OC.

Ostro, B. D., R. Broadwin, and M. J. Lipsett. 2000. Coarse and fine particles and daily mortality 
in the Coachella Valley, California: A follow-up study. Journal of Exposure Analysis and 
Environmental Epidemiology 10 (5):412–19. doi:10.1038/sj.jea.7500094.

PARK, J. W., Y. H. LIM, S. Y. Kyung, C. H. AN, S. P. LEE, S. H. Jeong, and Y.-S. JU. 2005. 
Effects of ambient particulate matter on peak expiratory flow rates and respiratory symp-
toms of asthmatics during Asian dust periods in Korea. Respirology 10 (4):470–76. doi:10. 
1111/j.1440-1843.2005.00728.x.

Pearl, J. 1986. Fusion, propagation, and structuring in belief networks. Artificial Intelligence 
29 (3):241–88. doi:10.1016/0004-3702(86)90072-X.

Peng, R. D., M. L. Bell, A. S. Geyh, A. McDermott, S. L. Zeger, J. M. Samet, and F. Dominici. 
2009. Emergency admissions for cardiovascular and respiratory diseases and the chemical 
composition of fine particle air pollution. Environmental Health Perspectives 117 (6):957–63. 
doi:10.1289/ehp.0800185.

Puth, M. T., M. Neuhäuser, and G. D. Ruxton. 2014. Effective use of pearson’s product- 
moment correlation coefficient. Animal Behaviour 93:183–89. doi:10.1016/j.anbehav.2014. 
05.003.

Rathore, S., M. Hussain, M. Aksam Iftikhar, and A. Jalil. 2014. Ensemble classification of colon 
biopsy images based on information rich hybrid features. Computers in Biology and 
Medicine 47 (1):76–92. doi:10.1016/j.compbiomed.2013.12.010.

Reed, M. D., Gigliotti, A. P., McDonald, J. D., Seagrave, J. C., Seilkop, S. K., & Mauderly, J. L. 
2004. Health effects of subchronic exposure to environmental levels of diesel exhaust. 
Inhalation toxicology, 16(4), 177-193.

Repace, J., and A. Lowrey. 1980. Indoor air pollution, tobacco smoke, and public health. Science 
208 (4443):464–72. doi:10.1126/science.7367873.

Roffo, G., Melzi, S., Castellani, U., Vinciarelli, A., & Cristani, M. (2020). Infinite feature 
selection: a graph-based feature filtering approach. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 43(12), 4396-4410.

Sarnat, J. A., A. Marmur, M. Klein, E. Kim, A. G. Russell, S. E. Sarnat, J. A. Mulholland, 
P. K. Hopke, and P. E. Tolbert. 2008. Fine particle sources and cardiorespiratory morbidity: 
An application of chemical mass balance and factor analytical source-apportionment 
methods. Environmental Health Perspectives 116 (4):459–66. doi:10.1289/ehp.10873.

Seagrave, J., J. D. McDonald, M. D. Reed, S. K. Seilkop, and J. L. Mauderly. 2005. Responses to 
subchronic inhalation of low concentrations of diesel exhaust and hardwood smoke mea-
sured in rat bronchoalveolar lavage fluid. Inhalation Toxicology 17 (12):657–70. doi:10.1080/ 
08958370500189529.

Shakir, H., Y. Deng, H. Rasheed, and T. M. R. Khan. 2019. Radiomics based likelihood 
functions for cancer diagnosis. Scientific Reports 9 (1):9501. doi:10.1038/s41598-019- 
45053-x.

APPLIED ARTIFICIAL INTELLIGENCE e2112545-3073

https://doi.org/10.1021/es991225g
https://doi.org/10.1021/es991225g
https://doi.org/10.1016/j.ymssp.2021.108700
https://doi.org/10.1164/rccm.201103-0465OC
https://doi.org/10.1038/sj.jea.7500094
https://doi.org/10.1111/j.1440-1843.2005.00728.x
https://doi.org/10.1111/j.1440-1843.2005.00728.x
https://doi.org/10.1016/0004-3702(86)90072-X
https://doi.org/10.1289/ehp.0800185
https://doi.org/10.1016/j.anbehav.2014.05.003
https://doi.org/10.1016/j.anbehav.2014.05.003
https://doi.org/10.1016/j.compbiomed.2013.12.010
https://doi.org/10.1126/science.7367873
https://doi.org/10.1289/ehp.10873
https://doi.org/10.1080/08958370500189529
https://doi.org/10.1080/08958370500189529
https://doi.org/10.1038/s41598-019-45053-x
https://doi.org/10.1038/s41598-019-45053-x


Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 
27 (3):379–423. doi:10.1002/j.1538-7305.1948.tb01338.x.

Silverman, D. T., C. M. Samanic, J. H. Lubin, A. E. Blair, P. A. Stewart, R. Vermeulen, 
J. B. Coble, N. Rothman, P. L. Schleiff, W. D. Travis, et al. 2012. The diesel exhaust in 
miners study: A nested case-control study of lung cancer and diesel exhaust. JNCI Journal of 
the National Cancer Institute 104 (11):855–68. doi:10.1093/jnci/djs034.

Sperotto, A., J. L. Molina, S. Torresan, A. Critto, M. Pulido-Velazquez, and A. Marcomini. 
2019. A Bayesian networks approach for the assessment of climate change impacts on 
nutrients loading. Environmental Science & Policy 100:21–36. doi:10.1016/j.envsci.2019.06. 
004.

Sprigg, W. A., S. Nickovic, J. N. Galgiani, G. Pejanovic, S. Petkovic, M. Vujadinovic, 
A. Vukovic, M. Dacic, S. DiBiase, A. Prasad, et al. 2014. Regional dust storm modeling for 
health services: The case of valley fever. Aeolian Research 14:53–73. doi:10.1016/j.aeolia. 
2014.03.001.

Takahashi, G., H. Tanaka, K. Wakahara, R. Nasu, M. Hashimoto, K. Miyoshi, H. Takano, 
H. Yamashita, N. Inagaki, and H. Nagai. 2010. Effect of diesel exhaust particles on house 
dust mite–induced airway eosinophilic inflammation and remodeling in mice. Journal of 
Pharmacological Sciences 112 (2):192–202. doi:10.1254/jphs.09276FP.

TAM, W. W. S., T. W. WONG, A. H. S. WONG, and D. S. C. HUI. 2012. Effect of dust storm 
events on daily emergency admissions for respiratory diseases. Respirology 17 (1):143–48. 
doi:10.1111/j.1440-1843.2011.02056.x.

Tanackov, I., Z. Janković, S. Sremac, M. Miličić, M. Vasiljević, J. Mihaljev-Martinov, and 
I. Škiljaica. 2018. Risk distribution of dangerous goods in logistics subsystems. Journal of 
Loss Prevention in the Process Industries 54:373–83. doi:10.1016/j.jlp.2018.03.013.

Teng, L., Z. Feng, X. Fang, S. Teng, H. Wang, P. Kang, and Y. Zhang. 2019. Unsupervised 
feature selection with adaptive residual preserving. Neurocomputing 367:259–72. doi:10. 
1016/j.neucom.2019.05.097.

Thai, H., D. S. Campo, J. Lara, Z. Dimitrova, S. Ramachandran, G. Xia, L. Ganova-Raeva, C.- 
G. Teo, A. Lok, and Y. Khudyakov. 2012. Convergence and coevolution of hepatitis B virus 
drug resistance. Nature Communications 3 (1):789. doi:10.1038/ncomms1794.

Town, G. I. 2001. The health effects of particulate air pollution – A Christchurch perspective. 
Biomarkers 6 (1):15–18. doi:10.1080/135475001452742.

Trompetter, W. J., S. K. Grange, P. K. Davy, and T. Ancelet. 2013. Vertical and temporal 
variations of black carbon in New Zealand urban areas during winter. Atmospheric 
Environment 75:179–87. doi:10.1016/j.atmosenv.2013.04.036.

Tyagi, S. K. 2015. Correlation coefficient of dual hesitant fuzzy sets and its applications. Applied 
Mathematical Modelling 39 (22):7082–92. doi:10.1016/j.apm.2015.02.046.

Venkatesh, B., and J. Anuradha. 2019. A review of feature selection and its methods. 
Cybernetics and Information Technologies 19 (1):3–26. doi:10.2478/cait-2019-0001.

VII. Mathematical contributions to the theory of evolution.—III. Regression, heredity, and 
panmixia 1896. Philosophical transactions of the royal society of London. Series A, 
Containing Papers of a Mathematical or Physical Character 187: 253–318. 10.1098/rsta. 
1896.0007

Wang, C.-H., C.-S. Chen, and C.-L. Lin. 2014. The threat of Asian dust storms on asthma 
patients: A population-based study in Taiwan. Global Public Health 9 (9):1040–52. doi:10. 
1080/17441692.2014.951871.

Wang, Y., C. Chen, P. Wang, Y. Wan, Z. Chen, and L. Zhao. 2015. Experimental investigation 
on indoor/outdoor PM2.5 concentrations of an office building located in Guangzhou. 
Procedia Engineering 121:333–40. doi:10.1016/j.proeng.2015.08.1076.

e2112545-3074 A. A. ALBRAIKAN ET AL.

https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1093/jnci/djs034
https://doi.org/10.1016/j.envsci.2019.06.004
https://doi.org/10.1016/j.envsci.2019.06.004
https://doi.org/10.1016/j.aeolia.2014.03.001
https://doi.org/10.1016/j.aeolia.2014.03.001
https://doi.org/10.1254/jphs.09276FP
https://doi.org/10.1111/j.1440-1843.2011.02056.x
https://doi.org/10.1016/j.jlp.2018.03.013
https://doi.org/10.1016/j.neucom.2019.05.097
https://doi.org/10.1016/j.neucom.2019.05.097
https://doi.org/10.1038/ncomms1794
https://doi.org/10.1080/135475001452742
https://doi.org/10.1016/j.atmosenv.2013.04.036
https://doi.org/10.1016/j.apm.2015.02.046
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1098/rsta.1896.0007
https://doi.org/10.1098/rsta.1896.0007
https://doi.org/10.1080/17441692.2014.951871
https://doi.org/10.1080/17441692.2014.951871
https://doi.org/10.1016/j.proeng.2015.08.1076


Wang, H., T. M. Khoshgoftaar, and K. Gao (2010). A comparative study of filter-based feature 
ranking techniques. 2010 IEEE International Conference on Information Reuse & Integration, 
Las Vegas, NV, USA, 1, 43–48. 10.1109/IRI.2010.5558966

Weldy, C. S., Y. Liu, H. D. Liggitt, and M. T. Chin. 2014. In utero exposure to diesel exhaust air 
pollution promotes adverse intrauterine conditions, resulting in weight gain, altered blood 
pressure, and increased susceptibility to heart failure in adult mice. PLoS ONE 9 (2):e88582. 
doi:10.1371/journal.pone.0088582.

Weng, Y.-C., N.-B. Chang, and T. Y. Lee. 2008. Nonlinear time series analysis of ground-level 
ozone dynamics in Southern Taiwan. Journal of Environmental Management 87 (3):405–14. 
doi:10.1016/j.jenvman.2007.01.023.

Wichmann, H.-E. 2007. Diesel exhaust particles. Inhalation Toxicology 19 (sup1):241–44. 
doi:10.1080/08958370701498075.

Wilhere, G. F. 2012. Using Bayesian networks to incorporate uncertainty in habitat suitability 
index models. The Journal of Wildlife Management 76 (6):1298–309. doi:10.1002/jwmg.366.

Xiao, F., L. Gao, Y. Ye, Y. Hu, and R. He. 2016. Inferring gene regulatory networks using 
conditional regulation pattern to guide candidate genes. PLoS ONE 11 (5):1–13. doi:10.1371/ 
journal.pone.0154953.

Xie, W., J. Lei, S. Fang, Y. Li, X. Jia, and M. Li. 2021. Dual feature extraction network for 
hyperspectral image analysis. Pattern Recognition 118:107992. doi:10.1016/j.patcog.2021. 
107992.

Yang, C.-Y. 2006. Effects of Asian dust storm events on daily clinical visits for conjunctivitis in 
Taipei, Taiwan. Journal of Toxicology and Environmental Health, Part A 69 (18):1673–80. 
doi:10.1080/15287390600630096.

Yarnell, C. J., D. Abrams, M. R. Baldwin, D. Brodie, E. Fan, N. D. Ferguson, M. Hua, 
P. Madahar, D. F. McAuley, L. Munshi, et al. 2021. Clinical trials in critical care: Can 
a Bayesian approach enhance clinical and scientific decision making? The Lancet Respiratory 
Medicine 9 (2):207–16. doi:10.1016/S2213-2600(20)30471-9.

Yoo, Y., J. T. Choung, J. Yu, D. K. Kim, and Y. Y. Koh. 2008. Acute effects of asian dust events 
on respiratory symptoms and peak expiratory flow in children with mild asthma. Journal of 
Korean Medical Science 23 (1):66. doi:10.3346/jkms.2008.23.1.66.

Yu, S., Z. Zhang, X. Liang, J. Wu, E. Zhang, W. Qin, and Y. Xie (2019). A MATLAB toolbox for 
feature importance ranking. 2019 International Conference on Medical Imaging Physics and 
Engineering (ICMIPE), Shenzhen, China, 1–6. 10.1109/ICMIPE47306.2019.9098233

Zauli Sajani, S., R. Miglio, P. Bonasoni, P. Cristofanelli, A. Marinoni, C. Sartini, C. A. Goldoni, 
G. De Girolamo, and P. Lauriola. 2011. Saharan dust and daily mortality in Emilia-Romagna 
(Italy). Occupational and Environmental Medicine 68 (6):446–51. doi:10.1136/oem.2010. 
058156.

Zelikoff, J. T., L. C. Chen, M. D. Cohen, and R. B. Schlesinger. 2002. The toxicology of inhaled 
woodsmoke. Journal of Toxicology and Environmental Health, Part B 5 (3):269–82. doi:10. 
1080/10937400290070062.

Zhang, L., Q. Pan, Y. Wang, X. Wu, and X. Shi. 2019. Bayesian network construction and 
genotype-phenotype inference using GWAS statistics. IEEE/ACM Transactions on 
Computational Biology and Bioinformatics 16 (2):475–89. doi:10.1109/TCBB.2017.2779498.

Zhiqiang, Q., K. Siegmann, A. Keller, U. Matter, L. Scherrer, and H. C. Siegmann. 2000. 
Nanoparticle air pollution in major cities and its origin. Atmospheric Environment 
34 (3):443–51. doi:10.1016/S1352-2310(99)00252-6.

APPLIED ARTIFICIAL INTELLIGENCE e2112545-3075

https://doi.org/10.1109/IRI.2010.5558966
https://doi.org/10.1371/journal.pone.0088582
https://doi.org/10.1016/j.jenvman.2007.01.023
https://doi.org/10.1080/08958370701498075
https://doi.org/10.1002/jwmg.366
https://doi.org/10.1371/journal.pone.0154953
https://doi.org/10.1371/journal.pone.0154953
https://doi.org/10.1016/j.patcog.2021.107992
https://doi.org/10.1016/j.patcog.2021.107992
https://doi.org/10.1080/15287390600630096
https://doi.org/10.1016/S2213-2600(20)30471-9
https://doi.org/10.3346/jkms.2008.23.1.66
https://doi.org/10.1109/ICMIPE47306.2019.9098233
https://doi.org/10.1136/oem.2010.058156
https://doi.org/10.1136/oem.2010.058156
https://doi.org/10.1080/10937400290070062
https://doi.org/10.1080/10937400290070062
https://doi.org/10.1109/TCBB.2017.2779498
https://doi.org/10.1016/S1352-2310(99)00252-6

	Abstract
	Introduction
	Materials and Methods
	Dataset
	Feature Extraction
	Feature Ranking Algorithms
	Bayesian Network Analysis

	Statistical Analysis
	Exploratory Analysis of the Unsupervised Network

	Sensitivity Analysis
	Segment Profile Analysis of Energy

	Results and Discussions
	Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References

