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Machine learning model and nomogram to predict the risk of heart 
failure hospitalization in peritoneal dialysis patients

Liping Xua‡, Fang Caob,c‡, Lian Wangb‡, Weihua Liub, Meizhu Gaob, Li Zhangb, Fuyuan Hongb and 
Miao Linb

aDepartment of Nephrology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China; bDepartment of Nephrology, 
Provincial Clinical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China; cDepartment of Nursing, Provincial 
Clinical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China

ABSTRACT
Introduction:  The study presented here aimed to establish a predictive model for heart failure 
(HF) and all-cause mortality in peritoneal dialysis (PD) patients with machine learning (ML) 
algorithm.
Methods: We retrospectively included 1006 patients who initiated PD from 2010 to 2016. XGBoost, 
random forest (RF), and AdaBoost were used to train models for assessing risk for 1-year and 
5-year HF hospitalization and mortality. The performance was validated using fivefold 
cross-validation. The optimal ML algorithm was used to construct the models to predictive the risk 
of the HF and all-cause mortality. The prediction performance of ML methods and Cox regression 
was compared.
Results: Over a median follow-up of 49 months. Two hundred and ninety-eight patients developed 
HF required hospitalization; 199 patients died during the follow-up. The RF model (AUC = 0.853) 
was the best performing model for predicting HF, and the XGBoost model (AUC = 0.871) was the 
best model for predicting mortality. Baseline moderate or severe renal disease, systolic blood 
pressure (SBP), body mass index (BMI), age, Charlson Comorbidity Index (CCI) score were strongly 
associated with HF hospitalization, whereas age, CCI score, creatinine, age, high-density lipoprotein 
cholesterol (HDL-C), total cholesterol, baseline estimated glomerular filtration rate (eGFR) were the 
most significant predictors of mortality. For all the above endpoints, the ML models demonstrated 
better discrimination than Cox regression.
Conclusions:  We developed and validated a novel method to predict the risk factors of HF and 
all-cause mortality that integrates readily available clinical, laboratory, and electrocardiographic 
variables to predict the risk of HF among PD patients.

Introduction

Peritoneal dialysis (PD) is one of the well-established renal 
replacement therapies that uses the peritoneal membrane 
for the liquid interchange; a catheter was placed in the peri-
toneal fundus through minor surgery or percutaneous tech-
nique. Peritoneal dialysis patients have many complications, 
among which cardiovascular disease is the most common 
cause of death in dialysis patients [1,2], and manifests as 
acute myocardial infarction, heart failure (HF), or sudden car-
diac death, and EF preserved HF is one of the most frequent.

Cardiovascular disease is the main risk factor of death in 
maintenance dialysis patients, due to arteriosclerosis and 
chronic inflammation. Compared with hemodialysis patients, 

the use of glucose solution can lead to metabolic syndrome 
and obesity in PD patients. Because of this, the risk of dyslip-
idemia and hyperinsulinemia is higher. However, in terms of 
long-term survival, hemodialysis and PD are similar.

Despite current medical advances in the diagnosis and 
evidence-based management of HF, the outcome of HF 
remains unsatisfactory. This may be related to the poor accu-
racy of traditional medicine in predicting diseases. A number 
of clinical risk models based on linear models have been 
developed to predict early mortality in the dialysis patients, 
such as logistic or Cox model [3–7]. The Framingham Risk 
Score (FRS) is one of these commonly used clinical models 
[8]. In the research of HF, the Seattle Heart Failure Model is 
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the most widely used risk prediction models, which achieved 
a C-statistic of 0.73 for mortality [9]. However, there are few 
studies in PD patients.

In recent years, machine learning (ML) has been proven to 
be a very powerful method in medical fields [10–13]. ML is a 
field of artificial intelligence, which mainly challenges big 
data and high dimensional data. The most prominent area of 
research which has seen rapid growth is in the field of diag-
nostics and prognosis [14–18]. ML, as a kind of classical pre-
diction model, has good predictive performance [19]. By 
self-learning from big data, ML can produce a stable model 
that can predict the outcome of another dataset [20]. ML has 
been increasingly used also in the field of HF research [21,22]. 
HF is a significant health problem in PD patients worldwide. 
In the United States, the annual mortality rate of such 
patients is as high as 20.7%, and the median morbidity hos-
pitalization is two times per year [23]. In this study, ML algo-
rithm was used to build a model to predict the risk factors 
of HF and all-cause death in PD patients. Early diagnosis, 
early treatment, improve the quality of life.

Materials and methods

Study population

This study included patients who underwent PD catheter-
ization and continuous ambulatory peritoneal dialysis 
(CAPD) in the Department of Nephrology, Fujian Provincial 
Hospital from January 2010 to December 2016. All adults 
aged ≧18  years. Patients were considered eligible for study 
inclusion when they had been on CAPD treatment for 
3  months or more. Exclusion criteria included patients with 
underlying malignancy, pregnancy, severe mental illness, 
severe lung disease, severe heart disease (NYHA III–IV) or 
congenital heart disease, active stage of autoimmune dis-
ease requires large dose of glucocorticoid and immunosup-
pressive therapy, missing data >10%. In total, 1200 PD 
patients were enrolled in the study. Six patients with 
underlying malignancy, four patients with severe lung dis-
ease, 27 patients with severe heart disease (NYHA III–IV), 
and one patient with active stage of autoimmune disease 
requires large dose of glucocorticoid and immunosuppres-
sive therapy and 18 patients had >10% missing data were 
excluded. One thousand one hundred and forty-four 
patients were included in this study. The participants were 
followed until February 2021. Forty patients transferred to 
hemodialysis, 23 patients received kidney transplantation, 
and 75 patients lost follow-up. The final analysis included 
1006 participants. The participants were randomly assigned 
to development set and external validation cohort. The 
development set were 606 participants. The external vali-
dation cohort included 400 participants. The work flow of 
the patients’ inclusion procedure is presented in Suppl. 
Figure 1. This study was approved by the Fujian Provincial 
Hospital ethics committee as an exempt study with a 
waiver of informed consent, allowing a retrospective review 
of medical records.

Data set

The data were obtained from the electronic medical records 
system and the laboratory information management system 
of the Fujian Provincial Hospital. All the data were collected 
for routine patient management with no additional data 
input required for the modeling. Clinical data of eligible 
patients were extracted and aggregated into a data tables 
for use by the ML models.

The endpoints

The endpoints were defined as HF hospitalization and 
all-cause death. HF is a clinical syndrome characterized by a 
range of symptoms (dyspnea, limited physical activity, and 
edema) and signs (elevated jugular vein pressure, pulmonary 
congestion), usually caused by a structural or functional dis-
ease of the heart that results in ventricular filling and/or 
impaired ejection capacity. HF is classified according to New 
York Heart Association (NYHA) functional class. The primary 
end point was HF hospitalization, NYHA functional class III–
IV. The secondary end point was all-cause death.

Diagnostic criteria for HF [24]: (1) dyspnea, fatigue, or 
decreased activity endurance; (2) signs of fluid retention (pul-
monary congestion and lower limb swelling): such as ele-
vated jugular venous pressure, wet rales at the bottom of 
lung; (3) abnormal cardiac structure and/or function in echo-
cardiography and pulmonary edema indicated by imaging. 
(4) The symptoms, signs, and imaging manifestations of the 
above patients were relieved by intensive dialysis, which 
included increasing the dialysis dose or using high concen-
tration peritoneal dialysate. Physicians choose intensive dial-
ysis according to the patient’s peritoneal function and the 
degree of HF.

Dyspnea and fatigue were measured using four-point and 
five-point exertion scales recorded respectively by the inves-
tigator [25]. The investigator quantified the severity of lung 
congestion by Congestion Score Index (CSI) [26,27] and 
assessed the degree of peripheral edema at baseline [28].The 
above symptoms, signs, and imaging scoring systems were 
also used to evaluate the remission of HF. The details of 
scales of dyspnea, fatigue, and lung congestion, peripheral 
edema are shown in the Suppl. Data.

Candidate variables

For each of the variable, selection was clinical routine data. 
In total, 113 patient characteristics (including demographics, 
comorbidities, vital signs, laboratory characteristics, electro-
cardiogram, echocardiogram, digital radiography, and ther-
apy) were collected as variable candidates by medical record. 
Variables with >10% missing data were excluded, and 
removed variables with a correlation coefficient >0.5. Finally, 
the study analyzed 96 variables. Missing data <10% were 
imputed using a random forest (RF) imputation.

The Charlson Comorbidity Index (CCI) [29] includes 19 
variables related to comorbidities, with scores ranging from 1 
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to 6, and the sum of ownership weights is the single compli-
cation score for each patient.

In accordance with the 2016 European Society of 
Cardiology Guidelines for HF, an echocardiogram has at least 
one of the following abnormalities: LA enlargement, LV 
hypertrophy, or mitral valve inflow/tissue Doppler abnormal-
ities. Echocardiography was performed by experienced 
sonographers after 3  months PD. The two examiners of echo-
cardiography have undergone uniform training.

Peritoneal equilibration test (PET): proposed by Twardowski 
in 1987. Corrected serum calcium (mmol/L)  =  Ca(mmol/L)  + 
0.02  ×  [40  –  ALB (g/L)]. Estimated glomerular filtration rate 
(eGFR) was calculated by the CKD-EPI formula. Left ventricu-
lar mass (LVM) was calculated via Devereux formula [30]: LVM 
(g)  =  0.80 [1.04  ×  (LVEDD  +  IVS  +  PWT)3  –  LVED D3]  +  0.6 g. 
The LVM index (LVMI) was calculated as LVM divided by the 
body surface area. Left ventricular hypertrophy (LVH) was 
defined as LVMI > 134 g/m2 in male and >110 g/m2 in female 
[31,32]. Ejection fraction (EF) was grouped by 50% (where 
ALB: albumin; Ca: calcium; LVEDD: left ventricular end dia-
stolic dimension; IVS: interventricular septum; PWT: posterior 
wall thickness; LV: left ventricular; LA: left atrial).

Statistical analysis

Baseline data were analysis by SPSS 22.0 software (SPSS Inc., 
Chicago, IL). Baseline data were displayed as mean  ±  stan-
dard deviation or median (interquartile range) for continuous 
variables and as percentages for categorical variables. The 
normal distribution variables and non-normal distribution 
variables were tested using the t-test or Mann–Whitney’s 
U-test. The counting data were expressed by percentage and 
χ2 test. p  <  .05 was considered statistically significant. 
Homogeneity of variance analysis and Pearson’s correlation 
test were performed on statistically significant variables. 
Variables of VIF > 10 and correlations > 0.5 were eliminated.

Model development (RF-based and XGB-based selection)

Three different ML algorithms were considered: XGBoost, RF, 
and AdaBoost. The performance of the models was assessed 
using fivefold cross-validation. Eighty percent of the data 
were used as training set and 20% as validation set. All data 
were randomly divided into five subsets of similar size and 
mutually exclusive. Each round of training selects four sub-
sets to form the training set and the rest subsets to form the 
validation set. Each model required training and validation 
five times, with different training and validation sets being 
used each time. The average of the five test results was 
accepted as the final result. The ML algorithm with the high-
est AUC value was selected for modeling. The important vari-
ables affecting the outcome were output and rank. The 
optimal model is output using the following measures: area 
under the ROC curve (AUC), accuracy, sensitivity, specificity, 
positive predictive value (PPV), negative predictive value 
(NPV), and F1-score. Compared with the prediction 

performance of optimal ML algorithm and Cox regression, all 
statistical analysis was done using R language 3.6.3 and 
python 3.7 environment (R Foundation for Statistical 
Computing, Vienna, Austria).

Results

Baseline characteristics

Among the development set, the mean (±SD) age was 
52.6  ±  16.1  years, 63.67% of patients were male. The median 
follow-up time was 49  months (IQR 16–69). 60.07% of 
patients had chronic glomerulonephritis, 25.41% of patients 
had diabetes, and 1.82% of patients had hypertension. The 
remaining kidney diseases included polycystic kidney disease 
and obstructive kidney disease, accounting for 12.71% 
(shown in Table 1, Suppl. Tables 1 and 2).

Results for predicting the risks of HF hospitalization

In this study, 298 of 606 patients developed HF required 
hospitalization during follow-up. As many as 65% of patients 
with HF were left ventricular EF preserved. Twenty-four sig-
nificant variables were choosen from baseline characteristics 
(shown in Table 1 and Suppl. Table 1). The performance of 
XGBoost, RF, and AdaBoost were assessed using fivefold 
cross-validation, the AUC values of training set were 0.844, 
0.931, and 0.821, respectively (shown in Suppl. Figure 2(A)), 
the AUC values of validation set were 0.793, 0.794, and 
0.794, respectively (shown in Suppl. Figure 2(B)). Finally, the 
optimal model of RF with the highest AUC was selected for 
modeling. Each index of the optimal model in the test set 
and the test set ROC curve are presented in Table 2 and 
Figure 1. Figure 2(A) presents the risk variables for predict-
ing HF from the RF model. CCI2 (the history of congestive 
HF) was the most important risk factor. Systolic blood pres-
sure (SBP), body mass index (BMI), and other risk factors 
followed.

Results for predicting the risks of the first year follow-up 
HF hospitalization

In this sub-endpoint, during the follow-up, 35 patients died 
within 1  year without HF. Seventy-nine of the 571 patients 
developed HF required hospitalization during the first year 
follow-up. Twenty-four significant variables were chosen from 
baseline characteristics (shown in Table 1 and Suppl. Table 1). 
The performance of XGBoost, RF and AdaBoost was assessed 
using fivefold cross-validation, the AUC values of training set 
were 0.874, 0.943, and 0.840, respectively (shown in Suppl. 
Figure 3(A)), the AUC values of validation set were 0.691, 
0.728, and 0.704, respectively (shown in Suppl. Figure 3(B)). 
Finally, the optimal model of RF with the highest AUC was 
selected for modeling. Each index of the optimal model in 
the test set and the test ROC curve are presented in Table 2 
and Figure 3. Figure 2(B) presents the risk variables for pre-
dicting the HF in first year follow-up from the RF model. BMI 
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was the most important risk factor. Age, SBP, and other risk 
factors followed.

Results for predicting the risks of the 5-year follow-up HF 
hospitalization

In this sub-endpoint, during the follow-up, 150 patients died 
within 5  year without HF. Two hundred and forty-six of the 456 
patients developed HF during 5-year follow-up. Twenty-four 
significant variables were chosen from baseline characteristics 
(shown in Table 1 and Suppl. Table 1). The performance of 

XGBoost, RF, and AdaBoost was assessed using fivefold 
cross-validation, the AUC values of training set were 0.944, 
0.806, and 0.857, respectively (shown in Suppl. Figure 4(A)), the 
AUC values of validation set were 0.706, 0.703, and 0.685, 
respectively (shown in Suppl. Figure 4(B)). Finally, the optimal 
model of XGBoost with the highest AUC was selected for mod-
eling. Each index of the optimal model in the test set and the 
test ROC curve are presented in Table 2 and Figure 4. Figure 
2(C) presents the risk variables for predicting the HF in 5-year 
follow-up from the XGBoost model. CCI score was the most 
important risk factor. BMI, SBP, and other risk factors followed.

Table 1.  Baseline data table for heart failure endpoints.

Characteristics All patients (n  =  606)
No HF event during 
follow-up (n  =  308)

Incident HF event during 
follow-up (n  =  298) p Value

Age (years), mean (SD) 52.6  ±  16.1 50.7  ±  15.9 54.5  ±  16.1 .005
Female, n (%) 222 (36.6) 121 (39.3) 101 (33.9) .168
Dialysis duration (months), mean (SD) 47.9  ±  33.6 62.3  ±  34.3 33.1  ±  25.7 <.001
Smoking history, n (%) 130 (21.5) 56 (18.2) 74 (24.8) .046
BMI (kg/m2), mean (SD) 22.6  ±  3.1 22.2  ±  2.9 23.0  ±  3.2 .003
SBP (mmHg), mean (SD) 149.2  ±  21.6 147.4  ±  21.3 151.1  ±  21.8 .016
DBP (mmHg), mean (SD) 83.6  ±  14.4 84.6  ±  14.3 82.6  ±  14.3 .100
Daily urine volume (ml), mean (SD) 807.5  ±  512.5 855.7  ±  515.6 757.7  ±  505.5 .009
Total weekly Kt/V, mean (SD) 1.8  ±  0.5 1.8  ±  0.5 1.9  ±  0.5 .628
eGFR (ml/min/1.73  m2), mean (SD) 6.0  ±  4.2 6.0  ±  4.8 5.9  ±  3.6 .611
PET, mean (SD) 0.74  ±  0.15 0.74  ±  0.16 0.73  ±  0.15 .649
Primary renal disease, n (%)
  Glomerulonephritis 364 (60.1) 208 (67.5) 156 (52.3) <.001
    Diabetes 154 (25.4) 50 (16.2) 104 (34.9) <.001
    Hypertension 11 (1.8) 4 (1.3) 7 (2.3) .333
    Others 77 (12.7) 46 (14.9) 31 (10.4) .094
Hypertension, n (%) 554 (91.4) 275 (89.3) 279 (93.6) .0057
CCI score, mean (SD) 5.1  ±  2.7 4.4  ±  2.3 5.9  ±  2.9 <.001
Biochemical parameters
  Hemoglobin (g/l), mean (SD) 86.4  ±  19.9 85.0  ±  19.9 87.9  ±  19.9 .073
  Serum albumin (g/l), mean (SD) 30.4  ±  7.0 30.3  ±  7.1 30.4  ±  7.0 .666
  Serum calcium (mmol/l), mean (SD) 2.9  ±  0.5 2.9  ±  0.5 2.9  ±  0.48 .440
  Serum phosphorus (mmol/l), mean (SD) 1.9  ±  0.7 1.9  ±  0.7 1.9  ±  0.6 .318
  Serum intact PTH (pg/ml), median (IQR) 204.5 [106.2, 349.6] 206.6 [106.9, 363.3] 204.4 [106.2, 331.2] .304
  NT-proBNP (pg/ml), median (IQR) 9948.0 [2401.0, 33713.0] 10047.0 [2762.0, 31811.0] 9628.0 [2320.0, 34716.0] .929
Echocardiographic parameters, mean (SD)
  EF (%) 59.4  ±  7.5 59.5  ±  7.1 59.4  ±  8.0 .248
  Left ventricular diastolic volume index (ml/m2) 62.7  ±  19.9 61.7  ±  20.8 63.6  ±  19.2 .887
  Right ventricular diameter (cm) 6.4  ±  0.6 3.4  ±  0.6 3.4  ±  0.6 .707
  LVPWT (cm) 1.1  ±  0.3 1.1  ±  0.4 1.1  ±  0.2 .272
  IVST (cm) 1.2  ±  0.2 1.2  ±  0.2 1.3  ±  0.2 .187
  LVMI (g/m2), mean (SD) 142.0  ±  48.4 140.4  ±  44.2 143.5  ±  52.0 .465
  Electrocardiogram ST-T change, n (%) 293 (48.4) 129 (41.9) 164 (55.0) .001
  Cardiac enlargement on DR, n (%) 127 (21.0) 51 (16.6) 76 (25.5) .007

SD: standard deviation; NT-pro-BNP: N-terminal pro-brain natriuretic peptide; BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood 
pressure; PD: peritoneal dialysis; eGFR: estimated glomerular filtration rate; PET: peritoneal equilibration test; ESRD: end-stage renal disease; CCI: Charlson 
Comorbidity Index; PTH: parathyroid hormone; EF: ejection fraction; LVPWT: left ventricular diastolic posterior wall thickness; LVMI: left ventricular mass 
index; IVST: interventricular septum thickness.

Data are presented as percentages, median (interquartile range) or mean  ±  SD. p Values <.05 were considered statistically significant.

Table 2.  Performance each index of the optimal model in the test set of AUC, accuracy, sensitivity, specificity, PPV, NPV, and F1-score.

End point
Machine learning 

algorithm AUC Accuracy Sensitivity Specificity PPV NPV F1-score

HF Random forest 0.853 0.746 0.710 0.849 0.788 0.696 0.747
1-Year follow-up HF Random forest 0.729 0.739 0.923 0.575 0.179 0.912 0.299
5-Year follow-up HF XGBoost 0.698 0.639 0.655 0.738 0.692 0.578 0.673
All cause death Random forest 0.871 0.821 0.780 0.892 0.806 0.829 0.793
1-Year all cause 

death
XGBoost 0.669 0.765 0.857 0.582 0.056 0.925 0.104

5-Year all cause 
death

Random forest 0.829 0.743 0.765 0.806 0.722 0.765 0.743

AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive value.
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Comparison of predictive performance between Cox and 
ML model in HF hospitalization endpoint

In this study, Cox model was used to evaluate the influence 
of risk variables in the endpoint of HF. The C-index of the 
Cox model in training set was 0.668 and test set was 0.724. 
The AUC of ML optimal model in test set was 0.853. In the 
1-year and 5-year follow-up HF endpoints, the AUC of ML 
optimal model in test set was 0.729 and 0.698, respectively, 
while the AUC of Cox were 0.723 and 0.759 (shown in Suppl. 
Figure 5(A,B)).

Nomogram for predicting HF

The ML model analysis contained risk variables for HF in PD 
patients, including categorical variables generated from con-
tinuous variables. The nomogram was quantified according 
to the weights of the variables selected by the model. In the 
nomogram analysis, age > 90, BMI > 30, SBP <100 mmHg, 
daily urine volume < 100, coronary artery disease, peripheral 
vascular disease, diabetes, ECG ST-T change, congestive HF, 
and smoking history were independent risk factors 

Figure 1.  The ROC curve for the random forest model for predicting heart 
failure in the test set. AUC: area under the curve.

Figure 2.  Variable importance analysis. Results indicate the decrease in accuracy of the final model on exclusion of each specific variable, quantified on a 
scale of 0 to 0.14, 250, respectively. While 0 represents the minimum importance (lowest decrease in the accuracy when excluded), 0.14 and 250 represent 
the maximum importance (highest decrease in the accuracy when excluded). (A) Variable importance analysis of heart failure. (B) Variable importance 
analysis of 1-year heart failure. (C) Variable importance analysis of 5-year heart failure; CCI1: myocardial infarction; CCI2: congestive heart failure; CCI5: 
dementia; CCI7: connective tissue disease/rheumatic disease; CCI9: mild liver disease; CCI13: renal disease. ESRD1: primary glomerulonephritis; ESRD2: dia-
betes; SBP: systolic blood pressure; BMI: body mass index.

https://doi.org/10.1080/0886022X.2024.2324071
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associated with HF hospitalization. Based on the ML model, 
a nomogram was plotted to predict the probability of HF 
hospitalization in PD patients (Figure 5).

Risk score system for HF incidence

From the 10 identified top-performing HF predictors, a risk 
score system for HF incidence was created (shown in Suppl. 
Figure 6), the risk variables were age, BMI, SBP, smoking his-
tory, congestive HF, daily urine volume, coronary artery dis-
ease, peripheral vascular disease, diabetes, and 
electrocardiogram ST-T change. The risk score ranges from 0 

to 56. The observed scores range from 0 to > 38. The risk of 
HF increased with the increase of the score at 1 and 5  years 
of follow-up. A one-classification increment in the risk score 
was associated with a 20% higher risk of HF at 1-year or 
5-year. It is divided into three risk levels according to risk 
scores (risk = 0, risk = 1, and risk = 2).

External validation of the risk score system for HF 
incidence

The risk score system for HF incidence was externally vali-
dated in the subgroup of PD patients at baseline. The exter-
nal validation cohort included 400 PD patients with 208 
incident HF events (52%). After plotting the externally veri-
fied survival curve, we found that the survival prognosis of 
PD patients in the high-risk group was significantly worse 
than that in the low-risk group (shown in Figure 6). The risk 
score system also had good risk prediction performance.

Results for predicting the risks of all cause death

Regarding all-cause mortality, 199 of 606 patients died 
during the follow-up. Forty-four significant variables were 
choosen from baseline characteristics (shown in Suppl. Table 
2). The performance of XGBoost, RF, and AdaBoost was 
assessed using fivefold cross-validation, the AUC values of 
training set were 0.897, 0.935, and 0.816, respectively (shown 
in Suppl. Figure 7(A)), the AUC values of validation set were 
0.828, 0.829, and 0.746, respectively (shown in Suppl. Figure 
7(B)). Finally, the optimal model of RF with the highest AUC 
was selected for modeling. Each index of the optimal model 
in the test set and the test ROC curve are presented in Table 
2 and Suppl. Figures 7(C) and 8(A) presents the risk variables 
for predicting the all-cause death endpoint from the RF 
model. Age was the most important risk factor. CCI score, CR, 
and other risk factors followed.

Results for predicting the risks of the 1-year all cause 
death

In this study, 64 of 606 patients died during the first year 
follow-up. Forty-four significant variables were chosen from 
baseline characteristics (shown in Suppl. Table 2). The per-
formance of XGBoost, RF, and AdaBoost was assessed using 
fivefold cross-validation, the AUC values of training set were 
0.876, 0.807, and 0.753, respectively (shown in Suppl. Figure 
9(A)), the AUC values of validation set were 0.709, 0.667, and 
0.667, respectively (shown in Suppl. Figure 9(B)). Finally, the 
optimal model of XGBoost with the highest AUC was 
selected for modeling. Each index of the optimal model in 
the test set and the test ROC curve are presented in Table 2 
and Suppl. Figure 9(C) and 8(B) presents the risk variables 
for predicting the 1-year all cause death from the XGBoost 
model. Age was the most important risk factor. High-density 
lipoprotein cholesterol (HDL-C), total cholesterol, and other 
risk factors followed.

Figure 3.  The ROC curve for the random forest model for predicting heart 
failure at year 1 in the test set. AUC: area under the curve.

Figure 4.  The ROC curve for the XGBoost model for predicting heart fail-
ure at year 5 in the test set. AUC: area under the curve.
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Results for predicting the risks of the 5-year all cause death

In this study, 161 of 606 patients died during 5-year 
follow-up. Forty-four significant variables were chosen 

from baseline characteristics (shown in Suppl. Table 2). The 
performance of XGBoost, RF, and AdaBoost was assessed 
using fivefold cross-validation, the AUC values of training 
set were 0.899, 0.938, and 0.832, respectively (shown in 
Suppl. Figure 10(A)), the AUC values of validation set were 
0.795, 0.809, and 0.774, respectively (shown in Suppl. 
Figure 10(B)). Finally, the optimal model of RF with the 
highest AUC was selected for modeling. Each index of the 
optimal model in the test set and the test ROC curve are 
presented in Table 2 and Suppl. Figure 10(C) and 8(C) 
presents the risk variables for predicting the 5-year all 
cause death from the RF model. Age was the most import-
ant risk factor. CCI score, eGFR, and other risk factors 
followed.

Comparison of predictive performance between Cox and 
ML model in all cause death endpoint

In this study, Cox model was used to evaluate the influence 
of risk variables in the endpoint of all cause death. The 
C-index of the Cox model in training set was 0.758 and test 
set was 0.769. The AUC of ML optimal model in test set was 
0.871. In the 1-year and 5-year follow-up all cause death end-
points, the AUC of ML optimal model in test set were 0.669 
and 0.829, respectively, while the AUC of Cox were 0.789 and 
0.804 (shown in Suppl. Figure 11(A,B)).

Figure 5. N omograms based on heart failure endpoints. The nomogram was quantified according to the weights of the variables selected by the model. 
BMI: body mass index; ECG: electrocardiograph; SBP: systolic blood pressure.

Figure 6. E xternal validation of the risk score system for HF incidence. 
Kaplan–Meier’s survival curves for PD patients with higher and lower risks of 
HF. The risk score is divided into three levels. The survival prognosis of PD 
patients in the high-risk group was significantly worse than that in the low-risk 
group follow-up time (m): the time from study enrollment to the end of HF.
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Discussion

The purpose of our study was accurately predicting the risks 
of HF hospitalization and all cause death in PD patients 
using ML tools. To our knowledge, this is the latest study to 
predict the risks of HF hospitalization and all cause death in 
PD patients using various ML algorithms. Our ML predicting 
models have several unique characteristics. First, ML has 
shown its advantages in the processing of big medical data, 
especially suitable for the study of PD patients with complex 
complications. Second, data noise and missing data are inev-
itable in data collecting from the real world, especially the 
retrospective studies, and ML algorithm can easy handle the 
complex problem. Third, compared to the traditional models, 
ML models allow data to be constantly updated and can 
accurately capture feature connections between data.

In this study, age was an independent risk variable for 
all-cause death and HF in PD patients. Aging is a major risk 
factor for cardiovascular disease and a prognostic determi-
nant of chronic HF [33,34]. According to the risk factors 
which derived from the ML model, we suggest reducing the 
age-related comorbidities index, which may help select 
patients in PD. The Framingham study showed that for every 
additional 10  years of age, the rate of HF increases twofold. 
PD patients have many complications, even absence of 
other comorbidities, weakness associated with aging 
increased mortality. We also propose thresholds for 
age-related comorbidities index, which may help evaluate 
the risk of HF and death in PD patients.

Another outstanding advantage of our study is that ML 
algorithm has increased usefulness of the CCI. Among the 
chronic disease indices validated in the dialysis patients, CCI 
has been widely used in statistical analyses due to its sim-
plicity and ability to predict mortality, the original CCI has 
been validated in PD patients [35,36]. PD patients have com-
plicated comorbidities, so CCI is quantifiable to evaluate the 
comorbidities. In this study, CCI score had a high weight in 
predicting the risk of all cause death and HF in PD patients, 
which was consistent with relevant studies.

Pulliam et  al. [37] conducted a study on PD patients in 
North America and found that the mortality of PD patients 
was 10% within one year. In our study, during the first year 
follow-up, the mortality was 11.5%, the result is similar with 
relation studies. According to a 5-year follow-up report 
released by the American Kidney Disease Data System in 
2015 since 2008 [38], the 3-year survival rate of PD patients 
was 66.4%, and the 5-year survival rate was 50.3%, with the 
mortality decreasing year by year. In our ML algorithm, the 
risks of 5-year all-cause mortality were age, CCI score, eGFR, 
creatinine, right ventricular diameter, DBP, total cholesterol, 
HDL-C, ALB, etc. It shows that, as longer as the duration of 
dialysis, complications, dialysis adequacy, blood lipid, and 
nutritional affect the survival.

One of the most widely used risk prediction models of HF 
is the Seattle HF model, which obtained an AUC value of 
0.73 [9]. However, few studies have used ML methods to pre-
dict the risk factors of HF in PD patients; this is another high-
light of our study. Recent data show that ML algorithms 

outperform logistic regression models in the prediction of HF 
outcomes [39–41].The traditional indicators of assessing HF 
such as edema, pulmonary rales, BNP were not sensitive and 
lagging. ML model has high sensitivity and specificity for 
clinical risk predicting. In our study, the AUC value of the risk 
predict model is above 0.8. In comparison with the Cox 
model, ML is mostly better than the Cox model. However, in 
the partial time endpoints, the ML model does not show 
superiority, which is related to the sample size. In this study, 
NT-proBNP and EF in predicted HF showed no significant dif-
ference, it may be because in patients with renal failure and 
insufficiency, NT-proBNP metabolism is slow. As for EF in 
echocardiography, although the average EF of the HF group 
was slightly lower than that of the non-HF group, due to 
insufficient sample size, the difference was not statistically 
significant.

This ML-based approach can deal with large multidimen-
sional time-to-data sets, it does not need to consider whether 
the data are normally distributed or not, and the over-fitting 
of the model. Based on the ML algorithm, we have also 
developed an integer-based risk score, which can effectively 
predict the risk of HF in PD patients. From the risk scoring 
system, the PD patients with higher scores show an upward 
trend with the increase of scores during 1-year and 5-year 
follow-up. We can develop a risk scoring software for clinical 
use to evaluate the risk and survival of HF in PD patients.

To conclude, the purpose of our study was using ML algo-
rithmic to accurately predict the risks of HF and all-cause 
mortality in PD patients by focusing on comorbidities and 
clinical information. Our models could help informing 
patients and caregivers early detection of the HF risk and 
all-cause mortality risk and may aid decision making in PD 
patients who are faced with the complication. Our risk scor-
ing system is also applicable to the clinical evaluation of the 
HF risk of PD patients.

Study strengths and limitations

Our study has several strengths. The advantage of this study 
is that although ML has been applied in the clinical use and 
even in the field of dialysis, the research on PD is still lack-
ing. This is the first ML study of all-cause mortality and car-
diovascular complications in PD patients.

However, the limitations of our study are also worth men-
tioning. First, our study is a retrospective, single-center study 
with a limited sample size. Second, ML algorithms fail to 
explain the relationship between variables and endpoints. 
Third, the gold standard for PD capacity evaluation is isotope 
dilution, and dual-energy X-ray and bioelectrical impedance, 
but these methods cannot be used as a routine evaluation 
method for large-scale clinical studies due to operational lim-
itations. It is impossible to distinguish between water and 
sodium retention or cardiac dysfunction by the traditional 
indicators in our study, especially in cases of normal EF. 
Fourth, this study only recorded HF patients requiring hospi-
talization, but did not include patients with subclinical symp-
toms of HF. Fifth, the scoring system needs to be verified by 
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a larger sample size. In addition, some variables were 
excluded due to the high degree of deletion in our cohort, 
especially the echocardiography data, which can be contin-
ued in the future study.

Conclusions

We implemented ML algorithms to accurately predict the 
risks of HF and all-cause mortality in PD patients. Finally, we 
provide comprehensive results of our study using different 
ML algorithms. Our study suggested potential of ML to facil-
itate risk stratification and to discover new predictors in com-
plex clinical situations, such as PD patients with many 
complications. This ML approach proved to have comparable 
forecasting value with Cox regression and was better than 
Cox model.
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