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The intestinal flora may act on cholesterol metabolism either, directly by converting the molecule to coprostanol, or indirectly, by
influencing upon intestinal bile acid metabolism, mainly by deconjugation. In the present study, sixteen probiotic strains belonging to the
genera: Bifidobacterium, Enterococcus Lactobacillus and Streptococcus were investigated for possible direct action on cholesterol
metabolism in vitro and in vivo in ex-germfree mice monoassociated with each probiotic. Additionally, deconjugation of taurodeoxycholic
acid (TDC) and of glycodeoxycholic acid (GDC) was investigated in vitro as an indirect effect upon cholesterol metabolism, using the
same strains. Gas-liquid chromatography and thin-layer chromatography were used. None of the probiotic strains, was able to transform
cholesterol to coprostanol in vitro or in vivo. Of the total probiotics analyzed, B. bifidum B12, L. acidophilus LaS, L. acidophilus
ATCC4356, L. fermentum ATCC14931, L. plantarum 299v, L. rhamnosus ATCC7469 and E. faecium were able to deconjugate both TDC
and GDC in vitro. We conclude that the formation of coprostanol does not account for the supposed cholesterol-lowering effect of the
probiotics tested. As some of the probiotics were able to deconjugate TDC and/or GDC in vitro, this microbial function should be studied
more extensively in vivo. Key words: germfree, monoassociated, probiotics, cholesterol, coprostanol, bile acid, taurodeoxycholic acid,

glycodeoxycholic acid.

INTRODUCTION

Cholesterol is an essential component of all cellular mem-
branes in mammals and the precursor of primary bile acids
and steroid hormones. The total body cholesterol pool is
derived from both endogenous and exogenous sources and
this pool is affected by the intestinal microflora, among
many other factors.

Cholesterol plays an important role in the development
of atherosclerosis and coronary heart disease in humans.
Consequently, many efforts have been made to control
serum cholesterol levels, not only by using pharmaceutical
products, but also with the consumption of cultured dairy
products i.e., probiotics, often defined as ‘live microbial
feed supplements which beneficially affect the host, by
improving its intestinal microbial balance’ (1).

The most likely mechanisms for microorganisms to act
upon the cholesterol metabolism are: i) direct action on the
cholesterol molecule, converting it into the non-absorbable
coprostanol (2-4), ii) indirect influence upon the choles-
terol metabolism, by interfering with the enterohepatic
circulation of bile acids (5, 6), and iii) direct ‘assimilation’
or adsorption of the cholesterol molecule to the microbes
in vivo (7).

© Taylor & Francis 2000. ISSN 0891-060 X

Over the years, many studies have been designed to
investigate microbial influence(s) upon cholesterol and bile
acid metabolisms in vitro as well as in vivo (for review, see
(4)). In general, microbial conversion of cholesterol to
coprostanol is a rare event, and only some few strains have
been isolated (8—10). Li et al. fed E. coprostanoligenes to
rabbits (3) and also to GF mice (11) and found a signifi-
cant decrease in serum cholesterol levels, with the con-
comitant increase of coprostanol excretion. Conversely,
they did not find any changes in serum cholesterol levels
after feeding the same strain to laying hens (12), despite a
significant increase in coprostanol excretion.

Microbial transformation of bile acids has been studied
in more detail and deconjugation of bile acids has been
reported in several species (13-16). Recently, Elkins &
Savage (17) working with Lactobacillus johnsonii 100-100,
hypothesized that deconjugation of bile acid is an impor-
tant fact for both supplying bacteria with energy as well as
for protecting them from bile acid toxicity.

Since the early studies in humans by Mann & Spoerry
(18), showing a surprising decrease in serum cholesterol
levels after ingestion of large amounts of fermented milk,
other investigators have claimed hypocholesterolaemic
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properties of different milk products in humans (19, 20), as
well as in other mammals (5, 21). However, others have
failed to demonstrate any cholesterol-lowering capacity of
dairy products, following similar trails (22, 23).

The three likely mechanisms of microbial influence on
cholesterol metabolism are all included in the Germfree
Animal Characteristic/Microflora Associated Characteris-
tic (GAC/MAC) concept (24).

The aim of this study was to investigate two of those
mechanisms in some probiotic bacteria: i) conversion of
cholesterol to coprostanol in wvitro and in vivo and ii)
deconjugation of TDC and of GDC in vitro. For this
purpose, sixteen bacterial strains from the lactic acid bac-
teria group and from the Bifidobacterium genus, were
selected among the most commonly ones used in the
manufacture of dairy products.

MATERIAL AND METHODS

Animals

A total of ninety male and female NMRI-KI mice, about
3 months old, were allotted to eighteen groups. Sixteen of
them, 4-5 GF mice per group were monoassociated with a
probiotic strain. The other two groups were the GF and
CV controls, 14 and 10 mice, respectively. The GF mice
were reared under GF conditions in light-weight stainless
steel isolators (25) and the CV mice in an ordinary animal
room with artificial light between 6 a.m. to 6 p.m., temper-
ature 24 +2°C and humidity 55 4+ 10%. All the animals

were fed an autoclaved rodent diet, R36 (Lactamin, Swe-
den) and had free access to water. The study was approved
by the Ethical Committee for Animal Research, Stock-
holm Nord, Sweden.

Bacterial strains

The probiotic strains used as monoassociates are listed in
Table I. They were purchased from international collec-
tions or received as donations, and their labels are pre-
sented as given by the donors. All the strains were tested
for conversion of cholesterol to coprostanol in vitro and in
vivo. All but three strains were tested for TDC deconjuga-
tion and all but two strains were tested for GDC in vitro.
Each strain was cultured in de Man, Rogosa & Sharpe
(MRS) or Todd Hewitt (TH) broth according to require-
ment, and incubated anaerobically at 37°C for 72 h.
Thereafter, aliquots of 0.5 ml were inoculated into 10 ml
of the in vitro test media and aliquots of 10 ml were
transferred into ampoules that were sealed and sterilized
on the outside with chromsulfuric acid and taken to the
GF isolators, to infect each animal group.

Cholesterol conversion

® Test media and procedure in vitro. Calf brain-peptone
yeast (CB-PY) medium was used to test cholesterol
conversion and it was prepared as follows. Aliquots of
100 ml of peptone yeast extract, as described in the

Table I
Deconjugation of taurodeoxycholic (TDC) and of glycodeoxycholic acid (GDC) by some probiotic strains

Bacterial strain Label* Source TDC & GDCt
deconjugation
Bifidobacterium
B bifidum B11 0014405 Tine, Norway - +
B bifidum B12 5001151 Ch. Hansen, Denmark + +
Lactobacillus
L acidophilus 1a5 0014410 Ch. Hansen, Denmark + +
L acidophilus ATCC4356 Arla, Sweden + +
L casei strain Shirota Yakult, Japan NT NT
L delbriickii
subsp bulgaricus DSM20081 Ch. Hansen, Denmark NT -
L fermentum ATCC14931 + +
L plantarum 271 strain 26 ProViva, Sweden - +
L plantarum 299 strain LP1 ProViva, Sweden - +
L plantarum 299v strain LP2 ProViva, Sweden + +
L reuteri BioGaia, USA NT NT
L rhamnosus ATCC7469 + +
L rhamnosus GG ATCC53103 Valio, Finland + —
Streptococcus and Enterococcus
S thermophilus ATCC19258 Ch. Hansen, Denmark - -
S thermophilus B16 1344506-1 Ch. Hansen, Denmark - +
E faecium Gaio, Denmark + +

* type strain by the culture collection or labeled by the donor, t deconjugation of TDC & GDC
performed by thin layer chromatography; NT not tested.



Anaerobe Laboratory Manual (26), were mixed with
2.5 g freeze-dried calf brain homogenized in 100 ml of
phosphate citrate buffer. Thereafter, 0.8 ml of re-
sazurin solution (11 mg resazurin in 44 ml distilled
water) were added. This medium was dispensed in 10
ml test tubes, autoclaved at 115°C for 10 min, inocu-
lated with the bacteria (see above) and incubated
anaerobically for 72 h at 37°C.

Positive control. For the conversion of cholesterol to
coprostanol in the in witro study, the so-called
‘long line’ was used. This consists of a microbial
mixture originating from a caecum of a CV AGUS
rat, subcultured in the CB-PY medium around 2300
times, starting almost 30 years ago. The cholesterol-
converting property has routinely been checked at in-
tervals.

Cholesterol conversion in vivo. Each group of mice
was transferred into a small stainless steel rearing iso-
lator (SRI) together with a fresh bacterial suspension
of the respective probiotic strain (see above), which
was spread on the bedding material and fur of the
mice. The animals remained within the SRI for 10-15
days. Thereafter, they were taken out, anesthetized
and killed by cervical dislocation. To verify bacterial
establishment, two inocula from caecum of 1 wl each,
were cultured in MRS or TH broth and agar. From
the inoculated broth, additional aliquots of 10 wl and
1 ol were plated onto agar. All the media were incu-
bated anaerobically at 37°C for 72 h. To investigate
cholesterol conversion, cecal and large intestinal con-
tents from each animal were sampled and stored
frozen at — 20°C until analysis.

Pretreatment of samples prior to gas liquid chro-
matography (GLC) analysis. The caecum and colon
content samples were thawed and aliquots of 0.5-1.0
g diluted with 2 ml of saline and homogenized. These
samples as well as the contents of the in vitro culture
tubes, were further hydrolyzed with 2 ml of a solution
of 95% ethanol and 10 M sodium hydroxide (2:1) in a
water bath at 60°C for 45 min. The hydrolysate was
extracted twice with n-hexane; the combined hexane
phases were extracted with 70% ethanol until pH was
neutral and evaporated to dryness.

GLC analysis of cholesterol conversion. The dried
samples were dissolved in acetone and assayed in a
gas liquid chromatograph equipped with a glass
column packed with 3% OV-17 maintained at 290°C
and with a flame ionization detector. The results were
expressed as the percentage of coprostanol out of the
total cholesterol plus coprostanol present. By using
this method, peak areas less than 5% were regarded
as impurities. GF animals do not excrete coprostanol
(GAQ) in feces, whereas CV animals do (MAC).
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Bile acid deconjugation

For TDC and GDC deconjugation analyses, each inocu-
lated MRS or TH broth (see above) was supplemented
either, with 2.5 mM TDC or 2.5 mM GDC and incubated
anaerobically at 37°C for 72 h. Thereafter, the free bile
acids were extracted by reflux boiling twice for 2 hours: i)
with 96% ethanol and ii) with chloroform: methanol (1:1),
followed by extraction with 70% ethanol/hexane. Then,
aliquots were assayed by thin-layer chromatography
(TLC) which was performed on pre-coated plates with
silica gel 60 (27), using n-butanol: acetic acid: water
(110:8:12) as a mobile phase for 8 h run and the glass
plates were developed with pure iodine. The results were
expressed as positive or negative with regard to deconjuga-
tion capacity.

RESULTS

All the animals remained healthy throughout the study.
All strains except L. delbriickii subsp bulgaricus were estab-
lished in the large intestine of the mice in numbers higher
than 107. Lower numbers of microbes (10°) were found in
those animals inoculated with L. delbriickii subsp
bulgaricus.

Cholesterol conversion in vitro

Coprostanol was not detected in any of the probiotic
cultures (data not shown). The ‘long line’ control showed
90% conversion of cholesterol to coprostanol (Fig. 1A).

Cholesterol conversion in vivo

No coprostanol was found in any of the mice inoculated
with the probiotic strains tested and this value corresponds
to a GAC (Fig. 1B). The chromatograms of the CV mice
tested, showed a mean value of 21% cholesterol conver-
sion; a result from one conventional mouse is presented in
Fig. 1C. A similar conversion has been found when the
‘long line’ is established in ex-germfree mice (data not
shown).

Microbial bile acid deconjugation in vitro

The results of the TDC and GDC deconjugation are
presented in Table I. When tested, all strains except two
were capable of splitting bile acid conjugates. Five of them
were able to split one of either conjugates.

DISCUSSION

Conversion of cholesterol to coprostanol is a microbial
function carried out by anaerobic microorganisms present
in the intestine of mammals. By definition, GF animals
lack that conversion (GAC). As early as 1959, Danielsson
& Gustafsson (28) found significantly higher serum choles-
terol levels in GF than in CV animals fed the same diet.

The results of this study show that none of the strains
tested was able to convert cholesterol to coprostanol i.e.,
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Fig. 1. Gas-liquid chromatograms from: A. calf brain-peptone yeast (CB-PY) medium inoculated with the positive control ‘long line’;
peaks 1.69 and 1.88 represent retention time for coprostanol (90%) and cholesterol, respectively, B. large intestinal sample from a NMRI
mouse inoculated with the probiotic L plantarum 299v; peak 1.86 represents retention time for cholesterol; no coprostanol (0%) peak is
observed, C. large intestinal sample from a NMRI conventional mouse; peaks 1.66 and 1.85 represent retention time for coprostanol

(40%) and cholesterol, respectively.

to act directly upon the cholesterol molecule. To the best
of our knowledge, no probiotic strain has shown the
ability to perform that conversion. It might be reasonable
to assume that this capability does not account for the
supposed cholesterol-lowering effect of probiotics, claimed
by some investigators (19, 20, 29, 30).

The other two mechanisms of lowering cholesterol lev-
els—increase in deconjugation of bile acids and choles-
terol ‘assimilation’—, are indirect effects on the molecule,
and they are mainly based on the capacity of the strains to
interact with bile acid metabolism.

Cholic and chenodeoxycholic acids are the most com-
mon primary bile acids in several mammalian species,
including man and are yield as the main end products
from cholesterol metabolism in the liver. They are conju-
gated within the liver mainly with glycine or taurine,
followed by secretion into the bile. In their conjugated

form, they perform emulsification of dietary lipids. When
reaching the intestine, they undergo several microbial
transformations, including deconjugation (4). Thus, bile
acids in CV animals are excreted in feces mainly in their
free form, while in GF animals, as conjugates. The bile salt
pool turns over 6—10 cycles per day. Most of the bile acids
are reabsorbed to return to the liver via the portal vein; a
small amount is excreted in the stools per day, which
balances hepatic synthesis.

It is well established that deconjugated bile acids have a
greatly reduced solubility, which in turn affects the solubil-
ity of cholesterol (31). It has been shown that some factors
such as pH and presence of a keto group in position C7,
influences upon adsorption of the bile acids to intestinal
microorganisms (32). Klaver & van Der Meer showed that
‘assimilation’ of cholesterol to lactobacilli and Bifidobac-
terium bifidum is due to their bile acid-deconjugating activ-

ity (16).



All three hypothesis of a serum cholesterol-lowering
effect of probiotics have in common that the interactions
have to take place in the small intestine i.e., the area in
which cholesterol and bile acids are absorbed.

As it is evident from Table I, the results show that
several probiotic strains can deconjugate bile acids. If this
were the case in vivo and if the strain could reside at least
temporarily in the lower part of the small intestine, we
would expect interference with the bile acid enterohepatic
circulation and thus indirectly affecting the total choles-
terol pool. Additionally, deconjugated bile acids may have
a reduced absorption rate and their higher excretion would
influence the cholesterol metabolism through an increased
de novo synthesis of bile acids.

Interestingly, the claimed cholesterol-lowering capacity
of probiotics are all related to species that are able to
deconjugate bile acids in vitro (21, 33-35). However,
whether and to what extent bile acids hydrolases deriving
from probiotic strains, exert splitting of the conjugates in
the small intestine, have as far as we are aware of, not
been investigated in man.

The adsorption or ‘assimilation’ hypothesis is based
upon some in vitro models (7, 36, 37). As in the case of the
deconjugation hypothesis, adsorption has never been
shown to take place in the small intestine. Thus, further
research is needed to approach and clarify the complex
mechanisms by which a specific probiotic may act on
blood cholesterol levels.
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