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ABSTRACT
Breast cancer (BC) is highly malignant and its mortality rate remains high. The development of 
immunotherapy has gradually improved the prognosis and survival rate of patients. Therefore, identifying 
molecular markers concerned with BC immunity is of great importance for the treatment of this disease. 
The Cancer Genome Atlas-breast invasive carcinoma (TCGA-BRCA) was utilized as the training set while 
the BC expression dataset from the gene expression omnibus database was taken as the validation set 
here. Weighted gene co-expression network analysis combined with Pearson analysis and Tumor 
immune estimation resource (TIMER) was used to obtain immune cell-related hub gene module. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were 
performed on this module. Then, receiver operating characteristic curves combining Kaplan–Meier was 
used to evaluate the effectiveness of the model. Feature genes were screened and the independence 
of risk score was evaluated by univariate and multivariate Cox analyses. Differences in immune 
characteristics were analyzed via single-sample gene set enrichment analysis and CIBERSORT, and 
differences in gene mutation frequency were assessed via GenVisR analysis. Finally, the expression levels 
of prognostic feature genes in BC cells were validated by quantitative reverse transcription polymerase 
chain reaction (qRT-PCR). In this study, cell immune-related gene modules in TCGA-BRCA were 
successfully excavated, and a five-gene (TNFRSF14, NFKBIA, DLG3, IRF2, and CYP27A1) prognostic model 
was established. The prognostic model could effectively forecast the prognosis and survival rate of BC 
patients. The result showed that human leukocyte antigen-related proteins and macrophage M2 scores 
were remarkably highly expressed in the high-risk group, whereas CD8+ T cells, natural killer cells, M1, 
and other anti-tumor cells were lowly expressed. The model could be used as an independent prognostic 
factor to predict the prognosis of BC patients. The results of qRT-PCR validation were consistent with 
the results in the database, that is, except DLG3, the other four feature genes were lowly expressed in 
BC. The five-gene model established in this study can predict the prognostic and immune mode of BC 
patients effectively, which is anticipated to become a feasible molecular target for BC therapy.

1.  Introduction

World widely, breast cancer (BC) is one of the most fre-
quently diagnosed malignancies, which also ranks as the 
number one cause of cancer-related deaths in women. Based 
on the American Cancer Society, the incidence of BC in 
women increased by about 0.05% annually from 2014 to 
2018, and it is estimated that 31% of BC new cases will be 
diagnosed in women in 2022 [1]. BC often shows intratu-
moral and intertumoral heterogeneity, which seriously inter-
feres with clinicians’ judgment of diagnosis, treatment, and 

prognosis [2]. Most BC patients have advanced disease or 
metastatic lesions when diagnosed, and for patients who 
have tumor within 2 cm without metastasis, their 5-year sur-
vival rates are more than 80%, whereas the 5-year survival 
rate of metastatic BC remains 26% [3,4]. Difficult early 
diagnosis and rapid tumor progression are not conducive to 
patient prognosis management. Consequently, it is very 
important to provide potent and accurate prognostic bio-
markers for prognosis prediction and treatment response 
evaluation of BC patients. These prognostic tools will fur-
ther guide accurate and personalized therapy.
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Based on the anti-tumor immune response, cancer 
immunotherapy excludes tumor cells via stimulating the 
host immune system [5]. Anti-tumor responses are induced 
by T-cell-related immune responses via increasing immune 
checkpoint inhibitors, but only a few cancer patients ben-
efit from them [6]. More and more evidence has con-
firmed that immune cell infiltration in the tumor immune 
microenvironment (TIME) is an essential factor in pre-
dicting BC patients’ prognoses. Recent research has 
reported that T-cell infiltration level is dramatically con-
cerned with the prognosis or treatment of BC patients. 
For example, studies have proved that highly infiltrated 
CD8+ T cells in tumor tissues are in connection with 
modified outcomes in triple-negative BC patients, provid-
ing a premise for the use of CD8+ T cells in autologous 
adoptive cell therapy [7]. However, the specific mechanism 
of TIME in BC is still ill-defined. Consequently, it is of 
huge significance to dive into mechanisms of tumor 
immune regulation and to explore new effective prognos-
tic biomarkers for BC.

Here, the gene co-expression network of The Cancer 
Genome Atlas-breast invasive carcinoma (TCGA-BRCA) set 
was constructed via weighted gene co-expression network 
analysis (WGCNA). After applying Tumor Immune 
Estimation Resource (TIMER) to assess the relevance 
between feature modules and infiltration levels of six 
immune cells, the target module, as the module that was 
significantly related to the infiltration of six immune cells 
was retained. Feature genes were screened by univariate and 
multivariate Cox analyses. Then, a five-gene prognostic 
model was constructed and its effectiveness was verified. 
Single-sample gene set enrichment analysis (ssGSEA) and 
CIBERSORT were used to analyze the differences in immune 
characteristics between groups. GenVisR was used to evalu-
ate the differences in gene mutation frequency between 
groups, which verified that the model could predict the dif-
ferences in immune patterns and gene mutation frequency 
of samples. Finally, forest plots were constructed to verify 
the clinical significance of the model. Viewed in total, the 
five-gene prognostic model manufactured in this study can 
predict the prognosis and immune pattern of BC patients 
and is expected to be a potential prognostic biomarker for BC.

2.  Materials and methods

2.1.  Data download

The training set sample expression together with clinical 
data were derived from TCGA-BRCA dataset (https://portal.
gdc.cancer.gov/), involving 1109 cases of tumor samples and 
113 cases of para-carcinoma samples. The validation set 
sample data came from GSE42568 and GSE20685 datasets in 
the gene expression omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20685). The 
content data of six kinds of immune cells (B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, macrophages, myeloid den-
dritic cells) in each sample were extracted from TIMER 
(https://cistrome.shinyapps.io/timer/).

2.2.  Target module gene obtained by WGCNA 
and  functional annotation

In the data preprocessing stage, samples with missing clini-
cal information in TCGA-BRCA were deleted, genes with 
zero expression level in 80% of samples were excluded, and 
the top 5000 genes according to median absolute deviation 
(MAD) were retained as the test target genes. Pearson cor-
relation analysis was conducted on the target genes to con-
struct the similarity matrix, and the optimal soft threshold 
was selected to power the matrix and construct a weighted 
adjacency matrix. The selection criterion of the optimal soft 
threshold was the value when the scale-free fitting index 
reached 0.9. The adjacency matrix was transformed into 
topological overlap matrix (TOM). Hierarchical clustering 
was carried out based on the dissimilarity of TOM, and 
highly similar gene modules were merged (the minimum 
module contained 50 genes, dissimilarity threshold was 
0.25). The correlation between each module and TIMER 
immune cell abundance and T, N, clinical stage was ana-
lyzed. The module that had the highest correlation with the 
level of immune infiltration was taken as the target module. 
Finally, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analyses on target 
module gene were performed by using R package clustePro-
filer, with the screening criteria of p < 0.05 and q < 0.05.

2.3.  Construction and verification of the prognostic 
model

TCGA-BRCA data were used as the training set, and R pack-
age survival (https://cran.r-project.org/web/packages/survival/
survival.pdf) was applied for univariate Cox regression anal-
ysis, with p < 0.05 as the standard. Genes notably associated 
with prognosis were retained for subsequent analyses. For the 
purpose of improving the interpretability and prediction 
accuracy of statistical models, Least absolute shrinkage and 
selection operator (LASSO) Cox regression analysis was 
accomplished on obtained genes concerned with prognosis by 
using the R package glmnet [8]. Besides, multivariate Cox 
regression analysis was executed by using R package survival 
to build the prognostic model. Samples were divided into 
high- and low-risk groups in accordance with a median risk 
score, R package FactoMineR [9] was used for dimension 
reduction of feature genes, and R package survival was used 
for Kaplan–Meier (K-M) analysis. Receiver operating charac-
teristic (ROC) curves were plotted using R package timeROC 
[10], and the area under the curve (AUC) value was obtained. 
The above methods were repeated in the validation set.

2.4.  TIME assessment

The ssGSEA analysis was implemented in high- and low-risk 
groups utilizing the R package GSVA [11]. R package estima-
tion (https://bioinformatics.mdanderson.org/estimate/rpackage.
html) was used to calculate the stromal score, immune score, 
ESTIMATE score, and tumor purity score in the two risk 
groups. R package CIBERSORT [12] was utilized to evaluate 
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differences in immune cell infiltration levels between two risk 
groups. T-test was performed on human leukocyte antigen 
(HLA) protein expression level in the two groups to reveal 
differences between groups, and correlation analysis was done 
on the expression levels of immune checkpoint-related mole-
cules (PDL1, PD1, CTLA4, and LAG3) in TCGA-BRCA sam-
ples and prognostic model risk score.

2.5.  Analysis of gene mutation frequency in high- and 
low-risk groups

R package GenVisR [13] was utilized to draw a waterfall 
map of the top 10 high-frequency mutation genes in two 
risk groups, and differences in gene mutation frequency in 
different groups were analyzed.

2.6.  GSEA analysis of high- and low-risk groups

TCGA-BRCA high- and low-risk group samples were ana-
lyzed by GSEA software [14]. The Wilcox test was used to 
compare risk scores between BC stages or subtypes.

2.7.  Correlation between risk scores and clinical traits

TCGA clinical information (Stage, Subtype) was obtained 
through cBioPortalData package [15,16]. The Wilcoxon test 
was used to detect differences in risk scores among different 
stages and BC subtypes.

2.8.  Nomogram construction and verification

Taking risk score as a prognostic factor, univariate and mul-
tivariate Cox regression analyses were fulfilled by R package 
survival combined with clinical characteristics (age, N stage, 
T stage, Stage) of TCGA-BRCA samples, to further evaluate 
the independence of multivariate model in predicting the 
prognosis of patients. R package rms [17] was used to fore-
cast the feasibility of 1-, 3-, and 5-year overall survival (OS) 
by combining clinical traits (age, N stage, T stage, Stage) 
and risk score values of the genes. Corresponding calibra-
tion curves were drawn to evaluate the prediction effect.

2.9.  Cell culture

Human normal mammary epithelial cells MCF 10 A 
(CTCC-001-0045) and human BC cells MDA-MB-
231(CTCC-001-0019) and MCF7 (CTCC-001-0042) were 
purchased from Meisen Cell Biotechnology Co. Ltd. All 

the above cell lines were cultured in RPMI-1640 medium 
supplemented with 10% fetal bovine serum (FBS) at 37 °C 
in a 5% CO2 incubator.

2.10.  Quantitative reverse transcription polymerase 
chain reaction (qRT-PCR)

Total RNA was extracted from cells using Trizol reagent 
(Invitrogen, USA) and reversely transcribed into cDNA. 
cDNA was used as a template for PCR amplification using 
the One Step SYBR PrimeScript RT-PCR Kit (Takara, Japan). 
PCR was performed using a fluorescent quantitative PCR 
instrument. Gene expression levels were quantitatively calcu-
lated by the 2−ΔΔCt method. GAPDH was the internal refer-
ence. Primer sequences are shown in Table 1.

2.11.  Statistical analysis

All data analyses and visualization were accomplished by R 
Studio (version 3.4.3), and then the Wilcoxon rank sum test 
or Kruskal–Wallis test was adopted to compare differences. 
The Cox regression model was applied to execute univariate 
and multivariate analyses, and the log-rank test was utilized 
to evaluate the difference in survival time. Spearman’s 
rank-order correlation test was used to analyze the correla-
tion between risk score and immune cell infiltration. Here, 
p < 0.05 means statistical significance.

Each experiment for qRT-PCR was repeated at least three 
times. Data were analyzed using GraphPad Prism 8.0 software. 
A comparison between the two groups was conducted by 
Student’s t-test. p < 0.05 was considered a significant difference.

3.  Results

3.1.  WGCNA is used to mine the immune-related 
target  module

The prognosis of BC patients is closely related to the infiltra-
tion of immune cells. To identify the genes associated with 
immunity in BC patients, WGCNA was performed. In 
TCGA-BRCA dataset, the MAD top 5000 genes in 1046 sam-
ples obtained after data preprocessing were used to construct 
a co-expression network. Here, the soft threshold value was 
set to 6 (scale-free R2 = 0.91) to construct a scale-free network 
(Figure 1(A–D)). Subsequently, altogether 12 gene modules 
were acquired based on average hierarchical clustering and 
dynamic splicing method, modules and the number of genes 
included were as follows: black (198), blue (814), brown 
(626), green (296), green–yellow (57), gray (993), magenta 

Table 1.  Primer sequences for qRT-PCR.

Primer sequence (5′–3′)
Gene Forward Reverse

TNFRSF14 CATCGTCATTGTTTGCTCCAC CTCCTGTCTTTTCCGCTGG
NFKBIA GAGTCAGAGTTCACGGAGTTC CATGTTCTTTCAGCCCCTTTG
DLG3 TCGGTGAATGGAGTGAATCTG TGTTCTCGTAAGTCATGTATCTTCG
IRF2 GATCTTTCTCCTGAGTATGCGG GCAAATGTCTGGCGGATTG
CYP27A1 CATGGAGCTATGGAAGGAGC TGAAAGCATCCGTATAGAGCG
GAPDH CAATGACCCCTTCATTGACC GACAAGCTTCCCGTTCTCAG
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(119), pink (127), purple (111), red (215), turquoise (1004), 
yellow (440) (Figure 1(E)). Correlation analysis between mod-
ules and infiltration levels of six types of immune cells dis-
played that the green module was signally relevant to the cells 
(Figure 1(F)). Therefore, this study took the green module as 
follow-up research object and named it target module.

3.2.  GO and KEGG analyses of target module gene

In order to explore the function of target module genes, GO 
and KEGG enrichment analyses were performed on the 
green module genes using the clusterProfiler package. GO 
enrichment analysis of target module gene portrayed that 
target module gene was related to positive regulation of 
cytokine production, defense response to the virus, type I 
interferon signaling pathway, and other cytokines, interferon, 
and virus defense biological functions in biological process 
regulation. While in terms of molecular function, target 
module gene was associated with the vesicle lumen, lyso-
somal lumen, secretory granule membrane, and other cellu-
lar components such as the vesicle membrane and lysosome 
cavity. In terms of cellular component regulation, target 

module gene was related to GTPase activity, immune recep-
tor activity, cytokine receptor activity, chemokine activity, 
and other cytokines, chemokines, and immune receptor 
activity (Figure 2(A)). In KEGG analysis, target module gene 
was mainly enriched in cytokine–cytokine receptor interac-
tion, chemokine signaling pathway, viral protein interaction 
with cytokine and cytokine receptor, complement and coag-
ulation cascades, antigen processing and presentation, inter-
action between cytokines and cytokine receptors, chemokine 
signaling pathway, complement and coagulation cascade, 
antigen processing and other signaling pathways (Figure 2(B)).

3.3.  Construction of the prognostic model

We expect to construct a model that can predict the prognosis 
of BC patients through these immune-related module genes, 
so as to accurately predict the prognosis of patients and guide 
clinical treatment. Univariate Cox analysis was carried out on 
target module gene in TCGA-BRCA, and 85 genes markedly 
associated with prognosis were obtained as the research 
objects. These genes were selected by LASSO regression anal-
ysis and 11 genes were identified (Figure 3(A,B)). Five 

Figure 1. I dentification of soft threshold power in WGCNA and screening of immune-related gene modules.
(A) Scale-free index analysis of various soft threshold power β. (B) Average connectivity analysis of each soft threshold power β. (C) When β = 6, the connectivity distribution of the 
co-expression network. (D) Scale-free topological performance verification of co-expression network when β = 6. (E) Dynamic splicing clustering tree based on intergenic dissimilarity to 
measure 1-TOM clustering. Each color represents a gene module. (F) Correlation heat map between module principal components and BC immune traits. The numbers above the paren-
theses in each square indicate the correlation coefficient and the numbers in parentheses indicate the degree of significance
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Figure 2.  Enrichment analysis of target module gene.
(A) GO functional enrichment analysis. (B) KEGG analysis. The color of the dots indicates the degree of enrichment significance. The size of the dots indicates the number of enriched 
genes.

Figure 3.  Construction of the risk assessment model based on the target module.
(A) LASSO coefficient spectrum of LASSO regression analysis. (B) Coefficient distribution map for logarithmic (λ) sequence in LASSO model. (C) Forest plot of five genes obtained by 
multivariate Cox regression analysis. When hazard ratio (HR) >1, the characteristic gene is a risk factor. When HR <1, the trait gene is a protective factor. When HR = 1, the characteristic 
gene does not play a role in survival time.
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prognostic feature genes (TNFRSF14, NFKBIA, DLG3, IRF2, 
and CYP27A1) were screened by multivariate Cox stepwise 
regression method from these 11 genes to construct a prog-
nostic risk assessment model. In the constructed model, 
TNFRSF14, NFKBIA, IRF2, and CYP27A1 were the protective 
factors of the model, while DLG3 was the risk factor. Risk 
score = − 0.1504 × TNFRSF14 − 0.21661 × NFKBIA + 0.4818 × 
DLG3 − 0.6047 × IRF2 − 0.1576 × CYP27A1 (Figure 3(C)).

3.4.  Validation of the prognostic model

Next, we validated the performance of the prognostic model 
in internal and external queues. TCGA-BRCA samples were 
put into high- and low-risk groups based on the median 
prognostic model risk score. Analysis of expression levels of 
feature genes in two groups showed that the expression of 
five feature genes TNFRSF14, NFKBIA,  IRF2, and CYP27A1 
in the low-risk group was higher than that in the high-risk 
group (Figure 4(A)). Distribution of risk score and survival 
status revealed that risk score and the number of deaths 
were positively correlated while the survival time decreased 
(Figure 4(B,C)). Principal component analysis (PCA) dimen-
sion reduction revealed that the five-feature gene risk assess-
ment model could better distinguish the samples of two 
groups (Figure 4(D)). For the purpose of further assessing 
the predictive effect of the prognostic model, ROC curves 
were drawn to evaluate the 1-, 3-, and 5-year survival rates 
of patients in TCGA training set and two GEO validation 
sets. AUC values of 1-, 3-, and 5-year survival rates in 

TCGA-BRCA training set (1 year: 0.68, 2 years: 0.67, 3 
years: 0.67; Figure 4(E)), GSE42568 (1 year: 0.83, 0.74, and 
0.7; Figure 4(F)) and GSE20685 validation sets (1 year: 0.83, 
2 years: 0.74, 3 years: 0.71; Figure 4(G)). K-M survival curve 
displayed that in TCGA training set, GSE42568, and 
GSE20685 validation sets, patients in the low-risk group had 
significantly higher overall prognostic survival than those in 
the high-risk group (Figure 4(H–J)). The above results sup-
ported the rationality of the risk assessment model based on 
five feature genes in this study.

3.5.  Differential analysis of immune mode and gene 
mutation mode between high- and low-risk groups

Based on the above analysis, we found that there was a sig-
nificant difference in survival rate between the high- and 
low-risk groups divided by the model constructed by 
immune-related genes. Therefore, we further explored the 
differences in immunity and other aspects between the 
high- and low-risk groups. The ssGSEA results in two 
groups established a higher level of immune cell infiltration 
in the low-risk group (Figure 5(A)). Comparison of tumor 
purity between the two risk groups revealed higher tumor 
purity in the high-risk group (Figure 5(B)). T-test for 
HLA-related proteins was performed in two risk groups, 
whose results showed that expression levels of HLA-related 
proteins were markedly high in the low-risk group (Figure 
5(C)). CIBERSORT algorithm was applied to score the 
immune infiltration abundance of 22 immune cells. T-test 

Figure 4.  Validation of the five-feature gene risk assessment model.
(A) Expression heat map of five-feature genes in high- and low-risk groups of TCGA-BRCA training set. (B) Distribution of five-feature gene prognostic model risk scores in TCGA-BRCA 
training set. (C) Distribution of survival status in TCGA-BRCA training set. Red dots indicate that the patient is dead at a fixed time, and green dots indicate that the patient is alive. (D) 
PCA reduced-dimension map of five-feature genes in TCGA-BRCA high- and low-risk groups. (E–G) ROC curves of a prognostic model in TCGA-BRCA training set, GSE42568 validation set, 
and GSE20685 validation set. (H–J) K-M survival curves in high- and low-risk groups of TCGA-BRCA training set, GSE42568 validation set, and GSE20685 validation set.
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Figure 5.  Analysis of immune characteristics and gene mutation differences in TCGA-BRCA high- and low-risk groups.
(A) Heat map of 29 immune features analyzed by ssGSEA. (B) Violin plot of tumor purity score for samples from high- and low-risk groups. ****p < 0.00001. (C) Box-plot of HLA-related 
protein expression in high- and low-risk groups. ***p < 0.0001. (D) CIBERSORT was used to analyze differences in 22 immune cell infiltration scores between high- and low-risk groups. 
*p < 0.05, **p < 0.001, ***p < 0.0001. (E) Pearson correlation analysis of programmed cell death-Ligand 1(PD-L1) and risk score. (F) Pearson correlation analysis between 
programmeddeath-1(PD-1) and risk score. (G) Pearson correlation analysis between LAG3 and risk score. (H) Pearson correlation analysis between CTLA4 and risk score. (I) Waterfall map 
of 10 high-frequency mutation genes in the low-risk group. (J) Waterfall map of 10 high-frequency mutation genes in the high-risk group. The ordinate represents the gene, the abscissa 
represents the patient, and the color of the thin bars in the coordinate represents the mutation type of the gene corresponding to the abscissa
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showed that CD8+ T cells, natural killer (NK) cells, and M1 
were dramatically lower in the high-risk group than in 
another group, and M2/M0 was prominently higher in the 
high-risk group (Figure 5(D)). These results indicated that 
there were differentiae in the types and levels of immune 
cell infiltration between the two groups. Further studies 
conducted Pearson correlation analysis between risk score 
and genes in connection with the immune checkpoint. 
Results showed that the risk score of the five-gene prognos-
tic model was notably negatively correlated with the expres-
sion of immune checkpoint-related genes PDL1, PD1, LAG3, 
and CTLA4 (Figure 5(E–H)). In view of relevant reports 
suggesting that differences in immune mode involved gene 
mutation regulation, this study visualized the top 10 genes 
with high-mutation frequency in high- and low-risk groups. 
The results showed that the frequency of gene mutation was 
higher in the high-risk group, especially the frequency of 
TP53 mutation in the high-risk group was dramatically 
higher than that in another group (Figure 5(I,J)). These 
above results supported the feasibility of a prognostic model 
to forecast the immune pattern as well as gene mutation 
frequency of samples.

3.6.  GSEA analysis

To explore the functional differences between the two risk 
groups, GSEA analysis was conducted on two risk groups of 
TCGA-BRCA samples. The results showed that the gene sets 
of the two groups were mainly different in immune-related 
pathways such as CHEMOKINE_SIGNALING_PATHWAY (ES 
= −0.57), B_CELL_RECEPTOR_SIGNALING_PATHWAY (ES 
= −0.60), and T_CELL_RECEPTOR_SIGNALING _ PATHWAY 
(ES = −0.57) (Figure 6(A–C)). Among them, the low-risk 
group was mainly enriched in these three immune-related sig-
naling pathways. And these pathways were significantly 
enriched as shown by false discovery rate (FDR) q-val.

3.7.  Construction and verification of the nomogram

We further explored whether the prognostic model had the 
ability to independently predict the prognosis of BC patients. 

Firstly, the analysis found that patients in stages II–IV cor-
responded to higher risk score (Figure 7(A)). More interest-
ingly, there were significant differences in risk scores 
between BC patients with different BC subtypes (Figure 
7(B)). In this study, univariate and multivariate Cox regres-
sion analyses were fulfilled on TCGA-BRCA training set in 
combination with clinical traits (age, T stage, N stage, Stage) 
and risk score. Univariate Cox analysis indicated that age, T 
stage, N stage, Stage, and risk score had significant effects 
on prognosis (Figure 7(C)). Multivariate Cox analysis clari-
fied that age and stage were significant prognostic factors, 
and risk score could be employed as prognostic factors 
independent of clinical characteristics (Figure 7(D)). By 
combining the clinical characteristics of genes (age, T stage, 
N stage, Stage) and risk score values, generated nomogram 
can be used to forecast 1-, 3-, and 5-year OS rates of 
patients (Figure 7(E)), and corresponding calibration curve 
fitting was ideal (Figure 7(F–H)). Overall, these results con-
firmed that the five-feature gene prognostic model had good 
predictive performance.

3.8.  Expression-level validation of prognostic 
feature  genes

We further validated the expression levels of the model fea-
ture genes using qRT-PCR. The validation results found that 
consistent with the previous analysis of gene expression in 
the database, all the feature genes except DLG3 were lowly 
expressed in BC (Figure 8).

4.  Discussion

In recent years, immunotherapy research aimed at mobiliz-
ing cell activity in TIME has achieved fruitful results. 
Although only part of patients with BC benefit from it, the 
importance of TIME in the development of BC and progno-
ses of patients has been extensively recognized [18,19]. Su 
et  al. [20] reported that tumor-associated macrophages in 
BC can induce the differentiation of circulating naïve CD4+ 
T cells into Tregs and lead to an immunosuppressive 
response. A thorough exploration of the correlation between 

Figure 6.  Enrichment results of GSEA biological pathway in high- and low-risk groups. (A-C) GSEA results showed enriched signaling pathways. ES indicates 
enrichment scores and FDR q-val indicates significance.
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immune cells and prognosis and treatment prediction is 
essential for the precise management of cancer prognosis. 
Therefore, in this study, we combined WGCNA and TIME 
assessment to mine the gene modules related to the immune 
regulation of BC and established a five-gene prognostic 
model to predict the prognostic survival rate of BC patients. 
In addition, differences in immune cell infiltration, immune 
checkpoint genes, and gene mutation frequency between the 
two risk groups were analyzed.

Five genes utilized to construct the prognostic risk assess-
ment model in this study were TNFRSF14, NFKBIA, DLG3, 
IRF2, and CYP27A1. Among them, only DLG3 was consid-
ered a prognostic risk factor, and the rest were prognostic 
protective factors of BC. Interestingly, we found that all the 

feature genes except DLG3 were lowly expressed in BC in 
our qRT-PCR experimental validation. Previous research has 
shown that these genes have an association with immune 
regulation, cancer progression, or prognosis. TNFRSF14 gene 
is associated with good prognosis in a variety of cancer 
patients, but its role in BC is unknown [21–23]. Functionally, 
TNFRSF14 is the link of NF-κB, RELA, AP-1, AKT, and 
other signaling pathways, which plays a crucial part in the 
immune system, such as promoting T-cell co-stimulation, 
regulating dendritic cell homeostasis, activating autoimmune- 
mediated inflammatory response and host defense against 
pathogens [24]. Specifically, the typical function of the gene 
in immune regulation is to promote the activation of NK 
cells, thereby promoting the anti-tumor activity of 

Figure 7.  Construction and verification of the nomogram.
(A) Correlation between risk score and clinical tumor stage. (B) Association between risk scores and breast cancer subtypes. (C) The forest plot was constructed in line with univariate 
Cox regression analysis. (D) The forest plot was constructed in line with multivariate Cox regression analysis. (E) Nomogram for predicting OS in TCGA-BRCA training set. (F–H) Calibration 
curves for predicting 1-, 3-, and 5-year OS rates of BC patients.
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tumor-specific CD8+ T cells [25]. Its immune regulation is 
reflected in multifarious cancers like lymphatic cancer, ovar-
ian cancer, and bladder cancer [21–23]. NFKBIA is the 
encoding gene of nuclear factor κB inhibitor (ikba), which is 
the inhibitor of NF-κB, a typical inflammatory factor  [26]. It 
is well known that the activation of NF-κB is closely related 
to inflammation-mediated tumor progression [27]. It has 
been shown that NFKBIA is related to the good prognosis of 
BC patients. From the perspective of mechanism, 
NFKBIA-encoded protein IκBα binds to NF-κB in the cyto-
plasm and inhibits BC metastasis by inhibiting macrophage 
M2 polarization [28,29]. DLG3 (Discs large homolog), also 
known as SAP102, is a member of the membrane- 
associated guanylate kinases (MAGUKs) family [30]. This 
gene is commonly seen in the study of neurological diseases, 
which plays a signal transduction role mainly by connecting 
N-methyl-D-aspartate (NMDA) receptors to the submem-
brane cell matrix related to excitatory synaptic density [31]. 
However, recently, related studies have gradually emerged 
that this gene can foretell the prognosis of cancer patients. 
For example, previous studies have proved that high expres-
sion of DLG3 is related to the decrease in prognosis and 

survival rate of BC. As a promoter, this gene up-regulates the 
PI3K/AKT signaling pathway activated by RAC1 to promote 
the proliferation, invasion, and epithelial–mesenchymal tran-
sition of BC cells [32,33]. IRF1 encodes interferon regulatory 
factor, and IRF1 recruits and activates tumor-infiltrating den-
dritic cells in an NF-κB-dependent manner to exert 
anti-tumor activity [34]. The high expression of this factor 
may affect tumor progression through immunosuppression, 
which is consistent with the results of this study that this 
factor serves as a prognostic protective factor for BC. The 
encoded protein of CYP27A1 is a hydroxylase, which acts as 
a homeostasis regulator of estrogen receptor and inhibits the 
growth and metastasis of BC [35]. It has been reported that 
this factor is a biomarker with good prognosis in BC patients. 
This report revealed that the high expression of CYP27A1 in 
BC patients was concerned with a 4-fold (HRadj = 0.26, 95% 
CI = 0.07–0.93) and 8-fold (HRadj = 0.13, 95% CI = 0.03–
0.60) reduction in the incidence of distant recurrence-free 
survival events. In vitro studies have shown that 27HC cata-
lyzed by CYP27A1 can effectively inhibit the proliferation of 
BC cells [36]. Importantly, if verified, these results may have 
an impact on the decision making of adjuvant therapy in 

Figure 8.  Expression levels of prognostic feature genes in the high- and low-risk groups were verified by qRT-PCR.
*p < 0.05 indicates a significant difference in gene expression between the tumor and normal groups.
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premenopausal patients, especially when considering down-
grade treatment. This is accordant with the outcomes of this 
study, but the specific mechanism is unknown [36]. This 
study revealed that the association of five genes with the 
prognosis of patients was highly consistent with the gene 
function described in previous reports, supporting its reli-
ability as a prognostic biomarker for BC.

To further explore the correlation between the prognosis of 
the five-gene model and immune regulation, based on ssGESA, 
this study disclosed that the difference in survival rate between 
the two groups may be driven by differences in immune cell 
infiltration (CD8+ T cells, NK cells, M1 macrophages, M2 mac-
rophages). This study exhibited that CD8+ T cells in the tumor 
microenvironment (TME) of the high-risk group were observ-
ably lower than those of another group. The function of CD8+ 
T cells was to activate other cytotoxic T lymphocytes in the 
tumor immune cycle, such as CD4+ T cells, and mediate 
anti-tumor immune response [37]. In clinical studies, NK cells 
often act synergically with CD8+ T cells in the anti-tumor 
immune process, and both have similar cytotoxic mechanisms 
[38,39]. M1 macrophages are the pro-inflammatory phenotype 
of macrophages, which is correlated with the mediation of 
anti-tumor immune response. The typical function of this cell in 
the TIME of BC is to inhibit the NF-κB signal transduction to 
promote the pyrophosphorylation of BC cells, thereby promoting 
the apoptosis of cancer cells [40]. While M2 macrophages in BC 
mediate cell proliferation, migration, and tumor growth in mice 
by reducing expression of interferon regulatory factor IRF7 and 
up-regulating the oncogene miR-1587 [41]. This study revealed 
the down-regulation of multiple immune cell infiltration levels 
(CD8+ T cells, NK cells, M1 macrophages) and the up-regulation 
of M2 macrophages that promoted the malignant progression of 
tumors in the high-risk group, suggesting that TIME in this 
group was immunosuppressive. Perhaps this model could use 
the state of TIME to determine the prognosis of patients.

In conclusion, we screened BC immune-associated gene 
modules via WGCNA network and built a five-gene prog-
nostic model based on the screening of prognostic biomark-
ers. Based on clinical survival analysis, immune cell 
infiltration level, and pathway enrichment analysis, it pro-
vides a reliable theoretical reference for the study of BC 
immune mechanism. However, this study is purely bioinfor-
matic and has not been proved by subsequent molecular 
experiments. Therefore, further molecular and cell experi-
ments are required to support the results here.
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