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Mini-review: Antimicrobial central venous catheters – recent advances and strategies
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Central venous catheters (CVCs) nowadays constitute critical devices used in medical care, namely in intensive care
units. However, CVCs also represent one of the indwelling medical devices with enhanced risk of nosocomial device-
related infection. Catheter-related infections (CRIs) are a major cause of patient morbidity and mortality, often
justifying premature catheter removal and an increase in costs and use of resources. Adhesion and subsequent
biofilm formation on the surfaces of indwelling catheters is elemental to the onset of pathogenesis. Seeking the
prevention of CVC colonisation and CRI, a variety of approaches have been studied, tested and, in some cases,
already applied in clinical practice. This review looks at the current preventive strategies often used to decrease the
risk of CRIs due to colonization and biofilm formation on catheter surfaces, as well as at the more recent approaches
under investigation.

Keywords: antimicrobial; bacterial adhesion; biofilm; catheter-related infection; central venous catheter; nosocomial
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Introduction

Bacterial adhesion to surfaces of medical devices is
considered to be the basic pathogenic mechanism of
implant infections. The major medical implants that
can be compromised by infections are intravascular;
cardiovascular; neurosurgical; orthopaedic; ophthal-
mological or dental (von Eiff et al. 2005). Catheters,
such as central line, intravenous or urinary catheters,
constitute potential surfaces for biofilm formation
(Davey and O’Toole 2000).

The main complication with the use of catheters is
the development of an infection which can be either
localised, within the bloodstream or distal (Raad
and Hanna 2002; Casey et al. 2008). Catheter-related
bloodstream infection (CRBSI) is a leading cause of
nosocomial infection in the intensive care unit (ICU),
increasing the duration of hospitalization, additional
medical costs and with significant morbidity (McGee
and Gould 2003; Frasca et al. 2010).

Complete and adequate barrier precautions during
insertion of the CVC (sterile gloves, long-sleeved sterile
gown, mask, cap and large sterile sheet drape) can
significantly decrease the frequency of CRBSI in
comparison with standard precautions (sterile gloves
and small drape) (O’Grady et al. 2002). However, these
precautions have not been sufficient.

After insertion, the surface of the catheter is rapidly
conditioned by a film of extracellular proteins such as

fibrin, fibrinogen, fibronectin, collagen, elastin, lami-
nin, vitronectin, thrombospondin, or Willibrand’s
factor that promote microbial adhesion and conse-
quent biofilm formation (Casey et al. 2008). Indeed,
only a few days after insertion, microorganisms can
start to colonize indwelling catheters forming biofilms,
ie sessile communities of microorganisms irreversibly
attached to surfaces and enclosed in a matrix of
exopolymeric products (Sekhar et al. 2010). These
biofilms can result in CVC-related infections (CVC-
RIs) and the leading microorganisms often responsible
for these infections include coagulase-negative staphy-
lococci, namely Staphylococcus epidermidis, but also
Staphylococcus aureus, Pseudomonas aeruginosa and
Enterococcus faecalis (Costerton et al. 1999). More-
over, approximately 80% of patients with candidemia
possess a CVC, which highlights the importance of
yeasts from the genus Candida as common causes
of CVC-RIs (Ben-Ami et al. 2008). These causative
microorganisms should be seriously considered in
determining preventative strategies.

The process of CVC insertion disrupts the integrity
of the skin making infection either with bacteria or
fungi possible, highlighting the need for the develop-
ment of antimicrobial catheters that should be active
on both the internal and external surfaces.

Moreover, pathogens in biofilm form become
more tolerant to conventional antibiotics and
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opsonophagocytosis (Stewart and Costerton 2001).
The treatment of a CVC-RI is usually performed using
conventional antimicrobial agents which are based on
standardized antimicrobial susceptibility test results,
and are often revealed to be unsuccessful, requiring the
removal of the CVC (Curtin et al. 2003). The problem
related to these standardized antimicrobial Suscep-
tibility tests is that they are usually performed with
planktonic cells, whilst biofilm cells are much less
susceptible to killing by antimicrobial agents (Nadell
et al. 2009).

Strategies for prevention of CVC-RI

In order to combat CVC-RI and all the associated
costs, a number of new strategies and approaches have
been developed. This article provides an overview not
only of the current, but also the latest new, approaches
in the prevention of CVC-RI.

Removal of the CVC, and thus of the associated
biofilm, has sometimes been used as the last resource
treatment of serious CRBSI. However, this aggressive
treatment in a critically ill patient, with a long
tunnelled CVC, for example, has very significant
practical problems and costs (Curtin et al. 2003). To
avoid such extreme therapy there has been a major
focus on the search for and development of the ‘ideal
catheter’.

The catheter material is critical in the prevention of
CRI. It should be biocompatible, biostable, flexible,
resistant, chemically neutral, not affected by adminis-
tered drugs, deformable, and resistant to sterilization
(Frasca et al. 2010).

Catheters coated with materials having antimicro-
bial and antiseptic properties have been proposed as a
way to provide additional protection, since they
decrease microorganism adhesion and biofilm forma-
tion, and further reduce risk of infection (Camargo
et al. 2009). The use of such catheters may potentially
decrease hospital costs, despite the additional acquisi-
tion cost of the antimicrobial/antiseptic coated cathe-
ter (Halton et al. 2009). Besides coated catheters,
other strategies have been applied, such as antimicro-
bial locks and catheter surface modification, and
other approaches are currently being investigated, for
example new drug delivery systems, phage therapy,
and antimicrobial peptides.

Antimicrobial locks

Antimicrobial lock therapy (ALT) is generally con-
sidered when a case of CRBSI is classified as
representing a low to moderate risk of a poor outcome
(Raad and Hanna 2002). Given that ALT is a therapy
applied on the CVC in situ, it can be of special interest

in the attempt to preserve long-term tunnelled cathe-
ters (Krishnasami et al. 2002). With this therapy, a
high concentration of antimicrobial agent is instillated
into the lumen of the infected CVC for long periods
of time, in order to try to overcome the relative
antimicrobial resistance of the microbial biofilm
(Berrington and Gould 2001). Generally, 2 to 4 ml of
antimicrobial solution, at a concentration 100- to
1000-fold higher than the minimal inhibitory concen-
tration or its usual target systemic concentration, are
introduced into the lumen of the infected CVC. The
solution is then allowed to settle (lock) for a period of
time while the catheter is not in use to eradicate the
microorganisms embedded in the biofilm formed on its
inner side (Shah et al. 2002).

Even though vancomycin and heparin have fre-
quently been used as ALT, for the treatment of
catheter-related staphylococcal bloodstream infec-
tions, clinical studies have reported the failure of this
combination (Bailey et al. 2002; Guedon et al. 2002).
On the other hand, Raad et al. (2003) demonstrated, in
a rabbit model and in hemodialysis patients, that a
combination of minocycline and EDTA was synergis-
tically active in eliminating bacterial and fungal
biofilms. Also Raad et al. (2008b) suggested the
addition of chelators such as EDTA and citrate to
antimicrobial lock solutions as a method of providing
a better alternative to heparin lock solution in the
prevention and treatment of CRBSIs. This is because
these high-affinity metal-binding chelators have the
capacity of inhibiting microbial growth by disrupting
surface adherence and preventing biofilm production
in the inner lumen of the catheter. Bookstaver et al.
(2009) evaluated in vitro the efficacy of novel anti-
biotic–anticoagulant lock solutions and according to
their results, gentamicin, tigecycline, and daptomycin
in combination with anticoagulants demonstrated
powerful activity against the common pathogens
responsible for CRBSIs, and should be considered
for clinical trials. Other authors (Steczko et al. 2009)
tested in vitro a lock solution containing citrate/
methylene blue/parabens, against Gram-positive and
Gram-negative organisms and fungi and the results
revealed a synergistic effect with strong antimicrobial
properties with respect to both planktonic and sessile
microorganisms.

Concerning CRI caused by Candida spp., the
current recommendation is the removal and replace-
ment of the infected device (Mermel et al. 2009), which
implies high costs and, in some cases, elevated risks
for patients. Therefore, as an alternative, the ALT
has been recommended for the prevention and treat-
ment of CRI in specific situations by the Infectious
Diseases Society of America and the Centers for
Disease Control and Prevention (Mermel et al. 2009).
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In the study of Cateau et al. (2008) it was demon-
strated, through in vitromodels, that the echinocandins
caspofungin and micafungin reduce the metabolic
activity of Candida albicans in biofilm. Data from
animal studies also indicate that the use of caspofungin
line locks reduces the spread of infection in mice with
central venous catheters infected with C. albicans
biofilms (Lazzell et al. 2009). The study of Ko et al.
(2010) investigated the in vitro activity of ALT against
biofilms formed by C. albicans, Candida glabrata and
Candida tropicalis, using five antifungal agents (caspo-
fungin, amphotericin B, itraconazole, fluconazole, and
voriconazole). The results demonstrated that flucona-
zole, itraconazole, and caspofungin were most effective
for C. albicans, C. glabrata, and C. tropicalis biofilms,
respectively, highlighting that azoles may be valuable
ALT agents in the treatment of catheter-related
candidemia.

Nevertheless, a serious problem with the ALT is
the risk of development of resistance, which is one of
the reasons why this therapy continues to raise many
questions among clinicians. Newer treatments, incor-
porating agents that are not classified as antimicrobial
agents, appear to effectively eradicate biofilms in
in vitro models and should be evaluated in studies
with animals and patients (Donlan 2008).

Surface-modified polymeric catheters

Surface modification of biomedical devices, such as
catheters, generally requires a complete modification
of the surface, mostly with hydrophilic polymeric
surface coatings, in order to achieve a non-biofilm
forming surface, (ie a surface where protein adsorption
and subsequent microbial adhesion are minimized)
(Knetsch and Koole 2011). Despite the large number
of research studies relating to surface modification of
medical devices, not many of these studies pass to the
next step, viz. clinical tests. Nevertheless, the hydro-
philic polyvinylpyrrolidone-coated polyurethane ca-
theter (known as Hydrocath1) developed by Tebbs
et al. (1994) is an example of surface modified catheters
clinically in current use. Catheters with a surface
impregnated or coated with antimicrobial agents have
been employed as a viable way of preventing CRBSIs
in the ICU for two decades (Halton et al. 2009).
Catheters impregnated with chlorhexidine and silver
sulfadiazine or with minocycline and rifampicin are the
best studied as well as the most commercialized and
frequently used antimicrobial-impregnated catheters
(Veenstra et al. 1999; McGee and Gould 2003). Metals
with antimicrobial activity have also been exploited,
specifically silver or silver nanoparticles, due to its
good antimicrobial action and low toxicity (Knetsch
and Koole 2011).

Chlorhexidine and silver sulfadiazine impregnated
catheters

Catheters coated with chlorhexidine and silver sulfa-
diazine (C-SS) have been clinically shown to reduce the
risk of colonization two-fold and the risk of CRBSI
by at least four-fold, in comparison with uncoated
catheters (Maki et al. 1997). The advantage of the use
of both compounds together is that they act synergis-
tically. Chlorhexidine disrupts the cytoplasmic mem-
brane of the bacterial cell, thus increasing the uptake
of the silver salts (Elliott 2007). The C-SS complex is
highly active against Gram-positive bacteria, while
demonstrating less activity against Gram-negatives
such as coliforms. However, many of the trials have
been carried out on first-generation C-SS catheters,
coated only on the external surface. This has two main
limitations, viz. (1) no protection was conferred with
regard to microbial invasion of the internal surface of
the catheter from contaminated hubs, since only the
external surface of the catheter was coated, and (2) the
catheters have reduced antimicrobial activity and poor
efficacy with long term use (42 weeks) (Raad and
Hanna 2002). Therefore, these catheters have been
shown to be particularly effective in reducing the risk
for CRBSI associated with short-term CVCs (Veenstra
et al. 1999) but failed to reduce the risk for CRBSI in
situations of long-term catheterization (Logghe et al.
1997). More recently, second-generation C-SS cathe-
ters, which are also coated internally with chlorhex-
idine, have been produced, but they are still poorly
studied, with a limited number of randomized trials
made. However, these second-generation catheters are
associated with a significant reduction in colonisation
and CRBSI (Rupp et al. 2005). Despite the fact that
chlorhexidine resistance has not yet been reported to
be associated with the use of these catheters some
adverse reactions to chlorhexidine have been described
(Trautner and Darouiche 2004).

Minocycline–rifampicin impregnated catheters

Along with antiseptics, antibiotics have also been
incorporated into CVCs. The minocycline–rifampicin
CVC is the most studied device, with broad spectrum
inhibitory activity. Furthermore, this coating has been
studied both in vitro and in vivo against Gram-negative
and Gram-positive bacteria, and also against
C. albicans, showing that it prevents the adherence
and biofilm colonization by the leading organisms that
cause CRBSI, including those that are resistant to
multiple drugs (Elliott 2007; Raad et al. 2008a).
Prospective, randomized, multicentre clinical trials
have demonstrated that minocycline–rifampicin im-
pregnated CVCs significantly prevent bloodstream
infections when compared to non-impregnated
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catheters, decreasing the duration of stay and mortal-
ity in critically ill and haemodialysis patients (Dar-
ouiche et al. 1999; Marik et al. 1999). Nevertheless, the
evaluation of their efficacy against second-generation
C-SS catheters still requires more clinical investigation
(Elliott 2007). In addition, there are concerns related to
potential antibiotic resistance with regard to rifampicin
(Darouiche et al. 1999; Raad and Hanna 2002), which
should limit the widespread use of antibiotic-coated
catheters.

Metals-coated polymeric catheter materials – silver
nanoparticles

The antimicrobial activity of silver, copper and other
metal ions is well known and, of all the elements, silver
has been described as having the highest level of
toxicity for microorganisms and the lowest toxicity for
animal cells (Guggenbichler et al. 1999). This metal
has a broad spectrum antimicrobial activity against
both Gram-positive and Gram-negative bacteria
(Elliott 2007). It inhibits replication by binding to the
microbial DNA and it also switches off important
enzymes, leading to microbial death (Chaiyakunapruk
et al. 2002).

Silver-containing nanomaterials are now consid-
ered to be one of the most promising strategies to
combat bacterial infections related to indwelling
medical devices, such as intravenous catheters. Nanos-
cale materials have recently appeared as new anti-
microbial agents due to their high surface area to
volume ratio and unique chemical and physical
properties (Rai et al. 2009). Nanomaterials of different
kinds, such as copper, zinc, titanium, magnesium, gold,
alginate and silver have been developed in recent years.
Nevertheless, silver nanoparticles (NPs) have demon-
strated more effectiveness with good antimicrobial
activity against bacteria, viruses and eukaryotic
microorganisms (Gong et al. 2007). Furthermore,
silver NPs have not been shown to cause bacterial
resistance, which is presumably due to the fact that,
unlike antibiotics, silver NPs do not exert their
antibacterial effects only at a particular site but at
several sites such as the bacterial wall, proteosynthesis
and DNA (Shrivastava et al. 2007). The considerable
surface-to-volume ratio of NPs enables a constant
local supply of Agþ ions to be maintained at the
coating-tissue interface, allows an improved and longer
contact with microorganisms (Rai et al. 2009), and also
protects the outer and inner surfaces of devices
(Darouiche et al. 1999). Although some studies have
raised some concerns regarding the biosafety of silver
NPs (Johnston et al. 2010), they are emerging as a
next-generation of antibacterial agents and there are
currently reports demonstrating the efficacy of silver

NPs in reducing or preventing biofilm formation on
catheter-materials both in vitro (Samuel and Guggen-
bichler 2004) and in animal models (Roe et al. 2008;
Hsu et al. 2010). Studies with patients are still few in
number.

Novel drug delivery carrier systems

The efficacy of the strategies mentioned above to
prevent biofilm formation on catheters, by impregnat-
ing or coating the surface of the device, is generally
limited by the feeble drug adsorption to the surface, as
well as by the fast and not-controlled elution of the
drug in the first hours subsequent to the insertion.
Drug delivery has been a subject of intense study over
recent years. The objective is to accomplish sustained
(or slow) and/or controlled drug release and therefore
to improve efficacy, safety, and/or patient comfort
(Varshosaz 2007).

These new drug delivery carriers can be considered
as a way of preventing colonization and biofilm
formation, and the most exploited for elimination of
microbial biofilms on biomedical devices are lipid- and
polymer-based carrier systems.

Liposomes as drug carriers

Liposomes are appealing drug carrier systems, speci-
fically against colonizing microorganisms, due to
factors such as compatibility with biological compo-
nents, the wide range and extent of drugs that they can
carry, the protection provided by the encapsulation of
the drug in the biological milieu, which decreases
toxicity, and also transportation, for long periods of
time, of the drug to target specific sites (Tamilvanan
et al. 2008). There have been several studies on the
interaction between liposomes and bacterial biofilms.
Halwani et al. (2008) reported a new successful
strategy for the use of liposomes as drug carriers, by
delivering two agents at the same time to prevent
P. aeruginosa biofilm formation and resistance in vitro.
Finelli et al. (2002) evaluated the efficacy of a
ciprofloxacin delivery system consisting of a liposomal
hydrogel that reduced bacterial adhesion to a silicone
catheter in a rat model of persistent P. aeruginosa
peritonitis, opening perspectives for the development
of new antimicrobial peritoneal dialysis catheters or
other types of catheters. Buckler et al. (2008) also
reported that liposomal antifungal lock therapy can be
considered as a possible alternative to catheter removal
in pediatric patients. Thus, the use of liposomes as
drug carriers seems to be advantageous over other
therapies used to prevent biofilm formation on
biomedical surfaces because liposomes can target
matrix or biofilm bacteria by specific attachment,
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allowing the drug to be released in the vicinity of the
microorganisms. This would significantly increase the
local drug concentration and simplify targeted deliv-
ery. Nevertheless, there are still problems associated
with specific liposome binding to the bacterial matrix
surface that demonstrate the need for more studies to
be carried out.

Polymer carriers

In recent years, noticeable attention has been paid to
the use of biocompatible or biodegradable polymers
of both natural and synthetic origin, as controlled
drug carriers of antimicrobial agents to the infections
associated with implants. Among these products,
polymeric microspheres, polymer micelles, and hydro-
gel-type materials have been shown to be effective
nanocarriers in enhancing drug targeting specificity,
lowering systemic drug toxicity, improving treatment
absorption rates, and providing protection for phar-
maceuticals against biochemical degradation (Şanlı
et al. 2008). These polymer drug delivery systems are
based on ‘nano-carriers’ which are formed by mixing
polymeric chemical compounds with drugs, forming
complex and large molecules, which ‘carry’ the drug
across physiological barriers. Poly(rhylene-glycol)-
poly(alpha, beta-asparic acid), carboxylates, and
heterobifunctional polyethylene glycol, are examples
of such polymeric compounds (Varshosaz 2007).

Ruggeri et al. (2007) developed an antimicrobial
polyurethane system containing two antibiotics, cefa-
mandole nafate and rifampicin and, in order to
increase the amount of the drug released, polyethyle-
neglycol was incorporated into the polymer bulk with
antibiotics, and used as a pore forming agent at
different molecular weights, giving promising results.
More recently, Crisante et al. (2009) developed nano-
structured polymer systems for antibiotic delivery
using bovine serum albumin or polyallylamine as
pore forming substances. Their results were corrobo-
rated by the work of Martinelli et al. (2011), which
hypothesize that this system possesses suitable features
for the manufacture of different types of antimicrobial
medical devices, including intravascular catheters.

Phage therapy

Since bacteriophages were first recognized, early in the
twentieth century, they have been the focus of
significant attention and, considering the increasing
apprehension regarding antimicrobial resistance in
hospitals worldwide nowadays, there is renewed
interest in phage therapy.

The use of phages to control biofilms and CRBSIs
has advantages over conventional antimicrobial

agents, namely, because phages have very strong
bactericidal activity and can replicate at the site of
the infection, being available in abundance where they
are most required (Azeredo and Sutherland 2008).
According to Doolittle et al. (1996), progeny phage
propagates radially throughout a biofilm, suggesting
that a single dose of phage could treat a biofilm
infection as progeny phage infects adjacent cells and
degrades the biofilm matrix. In addition, it was
demonstrated that some phages are able to produce
enzymes (depolymerases) that hydrolyse and degrade
the extracellular polymeric substance (EPS) matrix of
a biofilm (Verma et al. 2010).

Curtin and Donlan (2006) demonstrated, using
an in vitro model, that a phage active against
S. epidermidis could be incorporated into a hydrogel
coating on a catheter and significantly reduce biofilm
formation on its surfaces. Recently, Fu et al. (2010)
studied, in vitro, the effect of pre-treating hydrogel-
coated catheters with P. aeruginosa phages on biofilm
formation, and observed a significant reduction in the
number of biofilm cells.

However, there are aspects which must be con-
sidered prior to the use of phage therapy in humans,
such as the narrow host range of phage, bacterial
resistance to phage, inactivation by the patient’s
immune system, impure phage preparations that could
contain endotoxins, or phage-encoded virulence genes
that can incorporate into the host bacterial genome
(Donlan 2009). The use of an accurate selection of
phage mixtures or engineered phages, the optimization
of the material coating matrix, and validation using
in vitro and animal model systems, can provide
successful strategies to overcome these problems,
as well as determine whether phage therapy will be
clinically significant.

Antimicrobial peptides

Antimicrobial peptides (AMPs) are small cationic
peptides, conserved components of the immune
response, involved in the defence mechanisms of a
wide range of organisms (Guanı́-Guerra et al. 2010).
Members of the AMP family are widely distributed
in nature, more than 1500 AMPs having being
reported from organisms such as bacteria, fungi,
insects, plants or humans (Hancock 2001). Some
classes of AMPs such as b-defensins, indolicidin,
cecropin A, and magainins have demonstrated effec-
tiveness in killing bacteria, fungi, parasites and even
viruses (Hancock and Sahl 2006). Importantly, AMPs
have also been found to be effective against super-
bugs that have developed resistance to antibiotics
such as MRSA, and quinolone-resistant Enterobac-
teriaceae (Piper et al. 2009). AMPs have therefore

Biofouling 613



recently emerged as a class of antibiotics with
therapeutic potential.

It is generally accepted that cationic AMPs interact
by electrostatic forces with the negatively charged
phospholipid headgroups on the bacterial membrane
and cause disruption, either by permeabilizing them or
translocating across the cytoplasmic membrane to
attack cytoplasmic targets (Hilpert et al. 2009). Given
that the killing mechanism of AMPs involves targeting
the fundamental structures of bacteria such as the
membrane, the emergence of resistant mutants is
unlikely to occur due to the essential functions of the
membrane in maintaining microbial homeostasis,
metabolism and viability (Yeaman and Yount 2003).

Therefore, their broad activity spectrum, the
relative selectivity towards their targets (microbial
membranes), the rapid mechanism of action and,
above all, the low frequency in selecting resistant
strains, have attracted considerable interest to AMPs
as a potential new class of antimicrobial agents (Batoni
et al. 2011). Nevertheless, the work of Perron et al.
(2006) has demonstrated, in vitro, the development of
some level of resistance to AMPs.

The essential property of cationic peptides is their
net positive charge at neutral pH due to the presence
of multiple arginines and/or lysines in their sequences
(Hancock 2001). Given that the surface of several
synthetic materials used as biomaterials, such as
silicone and polyesters, that are normally subjected
to microbial colonization and biofilm formation, are
negatively charged at pH 7, this property permits
binding of cationic molecules, such as AMPs (Chen
et al. 2005). Therefore, and taking into account that
biofilm tolerance to antibiotics is generally due to the
slow growth rate and low metabolic activity of
bacteria, the use of AMPs to inhibit biofilm formation
could be a promising strategy. Considering that the
main mechanism of action of AMPs is their ability to
permeabilize and/or to form pores within cytoplasmic
membranes, this means that they also have a high
potential to be effective on slow growing or even
inactive bacteria (Batoni et al. 2011).

Bagheri et al. (2009) have detected reduced activity
of AMPs upon tethering to solid supports, which can
significantly compromise their effectiveness as biome-
dical coating materials. Despite this, the therapeutic
potential of cationic antimicrobial peptides is already
being explored with synthetic peptides demonstrating
efficacy in phase III clinical trials for prevention
of catheter-associated infections (Hamill et al. 2008).
So far, among the most explored AMPs categories for
clinical purposes are lantibiotics, temporins, cathelici-
dins and defensins.

The work of Bower et al. (2002) was the first
preclinical trial of implantable materials treated with

the lantibiotic nisin. This in vivo study showed no
clinically evident adverse effects from placement of
nisin-treated intravenous catheters and tracheotomy
tubes in sheep or ponies during the experimental
period. Regarding the activity of cathelicidin peptide
BMAP-28 against S. aureus biofilms, Cirioni et al.
(2006) reported good antimicrobial activity as well as a
tendency to attach to the biomaterial surface, making
the pre-treatment with BMAP-28 an attractive choice
to control device-related infections caused by staphy-
lococci. Etienne et al. (2004) developed a new strategy
based on the insertion of a defensin into polyelectrolyte
multilayer films and the biocompatibility and stability
attained, together with the possibility of varying the
number of adsorbed active proteins or peptides and
their amounts, could lead to biomedical applications
such as catheters protection.

The broad spectra of AMPs along with their
multifunctional characteristics make these peptides
unique natural molecules that can be exploited for
the development of novel therapeutic strategies.

Other approaches

Quorum-sensing interfering molecules

Alternative approaches for prophylaxis/treatment of
microbial colonization of polymeric surfaces include
the use of molecules that interfere with quorum-
sensing (QS). QS molecules allow bacteria to regulate
biofilm formation and the use of QS inhibitors for
biofilm control has already been demonstrated
(Rasmussen et al. 2005).

Until now, one of the most studied QS inhibitors
are furanones, which are able to control multicellular
behaviour induced by autoinducer-1 (Manefield et al.
2002) and autoinducer-2 (Ren et al. 2004) in Gram-
negative microorganisms. Lönn-Stensrud et al. (2009)
also reported that synthetic furanones were able to
inhibit biofilm formation by S. epidermidis without
irritative or genotoxic effects in mice. Baveja et al.
(2004) indicated that furanones did not promote
significant changes in the characteristics of the coated
material. This is especially applicable to commonly
used biomaterials for implantable devices such as
silicone, expanded polytetrafluoroethylene and
polypropylene.

Enzymes targeting the EPS

Bacteria attached to surfaces produce large amounts of
EPS, which binds the biofilm together as a matrix and
anchors the biofilm to the surface. Therefore, enzymes
targeting the EPS matrix of biofilms have also been
used alone or in combination with antimicrobial agents
to treat and dissolve biofilms (Alkawash et al. 2006).
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Kaplan et al. (2004) demonstrated that during
sessile growth, Actinobacillus actinomycetemcomitans
produces a soluble b-N-acetylglucosaminidase, named
dispersin B (DspB), able to disperse and detach mature
biofilms produced by S. epidermidis, by exerting its
hydrolytic activity against the exopolysaccharide ma-
trix produced by staphylococcal strains, as well as
some other bacterial species. Donelli et al. (2007) also
showed that DspB could be successfully adsorbed to
functionalized polyurethanes, maintaining its activity
against the biofilm matrix. A synergistic effect was also
observed when exposing biofilms to both DspB and the
antibiotic molecule cefamandole nafate, highlighting
these polymer – DspB – antibiotic systems as promising
and highly effective tools for preventing bacterial
colonization of medical devices such as catheters.

N-acetyl-L-cysteine (NAC) has also been shown not
only to reduce bacterial adhesion but also to detach
bacteria adherent to surfaces (Mansouri and Dar-
ouiche 2007). It can also decrease biofilm formation
by several bacteria by reducing the production of the
EPS matrix and promoting the disruption of mature
biofilms (Olofsson et al. 2003). Aslam et al. (2007)
demonstrated the good synergistic effect of NAC and
tigecycline in the treatment of catheter-associated
biofilm, as they both act on different components of
the biofilm. Similar results were obtained by Marchese
et al. (2003), with a synergistic effect of NAC with
fosfomycin against Escherichia coli biofilms. These
results suggest that these combinations could be
effective as catheter lock solutions or coatings for the
treatment of catheter-associated bacteremia.

Nitric oxide

Nitric oxide (NO) is a small, naturally produced,
hydrophobic, free-radical gas that has a major role in
innate immunity. It exhibits broad reactivity and rapid
diffusive properties through biological liquids and lipid
membranes, with a short half-life in a physiological
milieu (Subczynski and Wisniewska 2000).

The antimicrobial activity of NO was demonstrated
more than 50 years ago, with recent in vitro studies
showing inhibition of a wide variety of bacteria
(Hetrick and Schoenfisch 2007). NO was shown to be
bacteriostatic (Fang 1997), with in vitro evidence
demonstrating bactericidal effects (McMullin et al.
2005). By utilizing coatings capable of releasing NO,
the natural antimicrobial ability of the immune system
may be augmented to prevent the survival of patho-
genic bacteria at implant surfaces. There are numerous
NO-releasing coatings on biomaterials currently under
investigation, many of which have demonstrated
decreased incidence of biomaterial-associated infec-
tions. NO-releasing carbon-based coatings added to

monofilament polypropylene meshes, as a means of
reducing infectious complications after abdominal
wall surgeries, had a significant bactericidal effect on
in vitro biofilms of S. aureus and other pathogens
(Engelsman et al. 2009). Regev-Shoshani et al. (2010)
also presented a novel approach that creates an
antiseptic barrier on urinary catheters by impregnating
them with gaseous NO. These results open new
perspectives for NO impregnation in other types of
catheters or medical devices.

Electrical enhancement of antimicrobial activity

Approaches using electrical current have been pro-
posed as a way to prevent biofilm formation and also
to enhance the activity of antimicrobials against
established biofilms, a phenomenon that is known as
the bioelectric effect. This phenomenon can be
described as the enhancement, by a relatively weak
and continuous electrical current, of the activity of
antimicrobial agents (eg an antibiotic) against biofilm
microorganisms (Del Pozo et al. 2009b). With this
method, the antibiotic concentration necessary to be
effective against biofilm bacteria was lowered from
*5000 times to 4 times greater than those necessary
for planktonic bacteria in the absence of electricity
(Costerton et al. 1994). However, so far, there are only
few publications with in vivo data on the potential
therapeutic use of electrical current in medical device-
related infection. Del Pozo et al. (2009a) introduced a
new concept, the electricidal effect, by demonstrating
dose- and time-dependent killing of S. epidermidis
biofilms after prolonged exposure to low-intensity
direct electrical current. The electricidal effect was
also tested in vivo (Del Pozo et al. 2009c) in a rabbit
model of S. epidermidis chronic foreign body osteo-
myelitis, confirming the bactericidal activity of low-
amperage electrical current against bacterial biofilms.
These results highlight the possibility of the use of this
therapy on different medical devices, such as CVCs.

Ultrasound enhancement of antimicrobial activity

Despite the fact that ultrasound itself has been shown
not to influence bacterial viability in a biofilm, it has
been demonstrated to be effective in enhancing the
activity of antibiotics and other antimicrobial agents
against bacterial biofilms, which is known as the
‘bioacoustic effect’ (Qian et al. 1994).

It is thought that ultrasound induces cavitation
within the biofilm, which increases transport of solutes,
as antimicrobial agents, through the biofilm or outer
bacterial membranes (Carmen et al. 2005). Several
studies have demonstrated this bioacoustic effect
against microbial biofilms in in vitro and in animal
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model systems (Rediske et al. 2000; Carmen et al. 2005;
Hazan et al. 2006). Rediske et al. (2000) reported that
the combination of systemic gentamicin and applica-
tion of pulsed ultrasound to a simulated implant
infection in a rabbit model significantly reduced
bacterial viability on the implant, without damaging
the skin. In another study, Hazan et al. (2006) revealed
that low-energy surface acoustic waves generated
from electrically activated piezo ceramic elements are
effective against bacteria as well as fungi. No adverse
effects were observed, suggesting that this system may
potentially be attached to a variety of indwelling
medical devices, including endotracheal tubes and
peritoneal dialysis or central venous or catheters.

Light-activated antimicrobial agents

An alternative method of surface disinfection is the use
of a coating with light-activated antimicrobial agents
(LAAAs). LAAAS are a class of chemicals that when
excited with light of an appropriate wavelength,
transfer energy or electrons to ground state molecular
oxygen, generating reactive oxygen species, such as
singlet oxygen and the hydroxyl radical, which are
toxic to microorganisms (Page et al. 2009; Perni et al.
2009). These radical species have no specific target
within a microorganism, which is very important
because it avoids the potential problems of micro-
organisms developing resistance, given that resistance
only arises when a specific site is targeted by a
microbicide (Wilson 2003).

The use of a photosensitiser as an antimicrobial
agent is a direct refinement of the technique of
photodynamic therapy, a commonly used therapy to
target and destroy cancerous tissues. The destructive
power of the radicals produced by photosensitisers can
be put to use in a microbicidal surface coating when
the photosensitiser is immobilised within a polymer
matrix and applied to a surface (Wilson 2003;
Decraene et al. 2006). Among the most studied LAAAs
are indocyanine green (ICG), methylene blue (MB),
rose Bengal and toluidine blue O (TBO). In vitro
studies have shown that photosensitizers can retain
their antimicrobial properties when attached to poly-
mers. The work of Wilson (2003) and Decraene et al.
(2006) with immobilised photosensitisers, such as
TBO and rose Bengal, in a cellulose acetate coating,
demonstrated that the photosensitisers did not leach
from the cellulose acetate matrix and produced a
microbicidal surface active under visible (white) light
conditions. Perni et al. (2009) incorporated TBO and
TBO-nanogold mixtures into polyurethane and sili-
cone polymers and observed that TBO-incorporated
polymers showed kills of 4105 cfu ml71 for MRSA
after exposure for 1 min, which is probably the, or one

of the most, potent light-activated antimicrobial
polymer combination reported to date.

Perni et al. (2010) have demonstrated that MB and
TBO together with nanoparticulate gold could be
incorporated into common catheter polymers such as
polysiloxanes and polyurethanes. They have shown
that these polymers have equivalent mechanical
properties to polymers without the LAAA and that
under hospital lighting or room lighting conditions
these polymers show minimal degradation but an
enhanced ability to kill bacteria. All these studies
corroborate the possibility of using LAAAs incorpo-
rated into polymers as coatings of hospital surfaces,
which could be activated by the ambient light
conditions found in hospitals.

Conclusions

CVC-RIs due to biofilms will remain a major challenge
in health care in the near future. They are still an
important cause of morbidity and mortality and
frequently the only solution to an infected intravas-
cular catheter is its removal, which results in additional
economic and health costs. The development of
surfaces and coatings that can eradicate microorgan-
isms in an active way is an important element of
maintaining an aseptic environment and a large
number of methods have been developed in recent
years. Ideally these antimicrobial surfaces should be
long-lasting or permanent and their mode of action
should probably function simultaneously throughout
multiple pathways, so that the development of
resistance, as in the case of antibiotics, ultimately
does not occur.

Current preventive measures to decrease the risk of
these serious infections include antimicrobial agent-
impregnated catheters and antimicrobial lock therapy.
However, despite the good in vitro results in reducing
bacterial colonization, some of these compounds have
partially failed in preventing catheter-associated bio-
film formation, with some resistant microorganisms
arising. More clinical trials are also lacking. On the
other hand, with the emergence of nanomaterials,
nanosilver particles are a promising next generation of
antimicrobial agents, as well as other new drug delivery
technologies. Phage therapy has also been demon-
strated to have a high potential but, before its clinical
application, several issues must be clarified. Antimi-
crobial peptides have received attention due to their
broad spectrum of activity and difficulty in finding
resistance.

Promising technologies that incorporate novel
approaches such as QS inhibitors, enzymes that
dissolve biofilms, nitric oxide, electrical or ultrasound
enhancement of antimicrobial activity, also seem to
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provide useful approaches for the future. The light-
activated antimicrobials offer particular promise as
they function by generating reactive oxygen species
that act on multiple targets within microbes.

In conclusion, the current widespread arsenal of
antimicrobial coatings offers prospects for reducing
catheter-related infections. However, the search for the
ultimate catheter, a catheter that combines low-cost
coating technology, wide-spectrum and long-lasting
antimicrobial properties, and secure utilization,
continues.
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