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AWARD REVIEW

Role of androgens in energy metabolism affecting on body composition,
metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity:
lessons from a meta-analysis and rodent studies
Naoki Harada

Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, Japan

ABSTRACT
Testosterone is a sex hormone produced by testicular Leydig cells in males. Blood testoster-
one concentrations increase at three time-periods in male life–fetal, neonatal (which can be
separated into newborn and infant periods), and pubertal stages. After peaking in the early
20s, the blood bioactive testosterone level declines by 1–2% each year. It is increasingly
apparent that a low testosterone level impairs general physical and mental health in men.
Here, this review summarizes recent systematic reviews and meta-analyses of epidemiological
studies in males (including cross-sectional, longitudinal, and androgen deprivation studies,
and randomized controlled testosterone replacement trials) in relation to testosterone and
obesity, body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and
longevity. Furthermore, underlying mechanisms are discussed using data from rodent studies
involving castration or androgen receptor knockout. This review provides an update under-
standing of the role of testosterone in energy metabolism.

Abbreviations AR: androgen receptor; CV: cardiovascular; FDA: US Food and Drug
Administration; HFD: high-fat diet; KO: knockout; MetS: metabolic syndrome; RCT: randomized
controlled trial; SHBG: sex hormone binding globulin; SRMA: systematic review and meta-
analysis; TRT: testosterone replacement therapy; T2DM:type 2 diabetes mellitus
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Blood testosterone levels in life

Testosterone is the primary male sexual hormone and is
mostly produced by Leydig cells in the testis. Blood
testosterone concentrations rise during three phases of
human male life–fetal, neonatal (which can be separated
into newborn and infant periods), and at sexual maturity
(Figure 1) [1–3]. The first testosterone surge occurs at
around 8–24 weeks’ gestation, with a peak at around
13–14 weeks’ gestation in humans [4–7]; in rats, the
surge starts at E15.5 and peaks at E18.5 [8,9] and in
mice these events occur at E14 and E18 [10]. This surge
in the middle of the gestation period is required for male
sexual differentiation and asynchronously masculinizes
the internal reproductive organs (e.g., prostate, seminal
vesicle, and epididymis) and the external genitalia
[11,12]. The second testosterone surge occurs at neonatal
phase (i.e., newborn and infants). The testosterone level
is elevated for several days after delivery; this then
declines prior to a subsequent surge from 1–5 months,
with a peak at around 1–3 months [2,7,13]. The testos-
terone level is also elevated for several hours after delivery
in rodents [2,14]. The neonatal testosterone surge con-
tributes to brain masculinization [2]. In the third pub-
ertal surge, the testosterone level starts to rise in 12-year
old in humans [15], and increases until a peak in the early

20s; the equivalent rise starts at 5–6 weeks of age in rats
[16,17] and at 4 weeks of age in mice [10,18]. This
pubertal testosterone rise contributes to the development
of secondary sexual characteristics and reproductive
capacity.

In blood, 50–60% of the testosterone is strongly
bound to sex hormone binding globulin (SHBG),
40–50% binds weakly to albumin, and 1–2% testosterone
exists as the free form [19]. Free and albumin-bound
testosterone are bioactive. After sexual maturation, the
levels of total and bioactive testosterone steadily decrease
by 1–2% per year [19]. A low blood testosterone level in
men is a criterion for the diagnosis of late-onset hypo-
gonadism, LOH, which impairs general physical and
mental health status and is diagnosed in ~ 2% of elderly
men [20]. Total and free testosterone levels of less than
11 nM and 0.22 nM, respectively, are the minimum
criteria for the diagnosis of late-onset hypogonadism in
Europe [20]. SHBG shows high-affinity binding to tes-
tosterone and low-affinity binding to estrogen; the levels
of this binding protein therefore affects the ratio of
androgen and estrogen delivery to target tissues.
Testosterone levels are also dramatically reduced by phy-
sical castration (orchidectomy) or chemical castration
using a luteinizing hormone-releasing hormone analog,
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because testosterone is predominantly synthesized in
response to luteinizing hormone.

Androgens and energy metabolism: human
clinical and epidemiological studies

The expected life-span is about 6 years longer for women
than formen in developed countries [21]. Cardiovascular
(CV) morbidity and mortality is over 2-fold greater in
men than in women. The effects of sex hormones can
explain many physiological differences between males
and females. Estrogen has the potential to decrease CV
risk, which rises after menopause in women [21].
Therefore, the relatively low levels of estrogen in men
could contribute to this sex difference. The Coronary
Drug Project examined whether estrogen was protective
against CV disease in men [22]. However, contrary to
expectations, estrogen treatment was found to increase
the risk for unexpected CV mortality in men. This pro-
ject highlighted the important concept that sex hor-
mones do not produce the same outcomes in men and
women with respect to the prevention of CV disease. In
the past decade, a low level of testosterone, rather than a
low level of estrogen, has become increasingly apparent
as a CV risk factor in men [23,24].

Many clinical and epidemiological studies have
assessed the effects of testosterone on all-cause death
or mortality and morbidity due to metabolic diseases.
Unfortunately, the conclusions of these studies are not
always consistent due to differences in methodology,
subjects, and/or population size. The systematic review
and meta-analysis (SRMA) provides a valuable tool for
the identification of reliable evidence base by overview-
ing all the available studies more reliable results by
overviewing all the available studies. SRMA is useful
for the evaluation of multiple datasets with conflicting
results or limited statistical power. Since 2001, a signifi-
cant number of SRMA reports relating to testosterone

and metabolism and/or CV disease have been pub-
lished. Relevant epidemiological studies have employed
various models, including cross-sectional and prospec-
tive longitudinal study designs. This review has sum-
marized these SRMA studies in men (Table 1).

Relationships between testosterone and CV
disease and/or longevity

SRMA studies of prospective longitudinal cohort
research have indicated that low total testosterone
levels are associated with increased all-cause and CV
death [25,26]. A decrease in blood total testosterone
by 2.18 standard deviations below the normal range
increases the risk of all-cause and CV mortality by
35% and 25%, respectively [25]. This effect was
detected in the SRMA of prospective longitudinal
studies (i.e., with observations at multiple time-
points), suggesting a causal effect of low testosterone
levels on these death rates. In addition, SRMA also
indicated that a higher level of estrogen (17β-estra-
diol) was a risk factor for CV morbidity and mortality
in men [26], supporting the findings of The Coronary
Drug Project [22]. On the other hand, one SRMA
found no association between low testosterone and
CV morbidity, although it did increase all-cause and
CV death [26]. Another SRMA showed no correla-
tion between a low testosterone level and CV mor-
bidity risk in middle-aged men, but increased the risk
in elderly subjects aged > 70 years-old [27].
Collectively, these data indicated that low levels of
testosterone (hypogonadism) appeared to increase
the risk of early death. In addition, this may elevate
CV risk in elderly men.

Testosterone replacement therapy (TRT) can boost
blood testosterone levels and confer many beneficial
effects such as maintaining muscle mass and bone
mineral density, and improving quality of life [28–30].

Figure 1. Testosterone surges in a human male. Three testosterone surges–fetal, neonatal, and pubertal surges, are indicated.
Testosterone levels among men (in Western countries) decline with age. G, gestation; mo, month; wk, week; y, year.
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Clinical use of TRT, which began ~ 70 years ago [31],
would be expected to improve outcomes and extend
life-span in hypogonadal subjects [32,33]. However,
several SRMA studies have failed to identify any asso-
ciation between TRT and CV morbidity [34–38] or CV
death [30,36]. Meanwhile, one SRMA concluded that
TRT increased CV risk in studies that were not funded
by the pharmaceutical industry [39]; another SRMA
indicated that oral TRT, but not injected or transdermal
TRT, increased CV risk [40]. In response to reports of
TRT side effects, both the US Food and Drug
Administration (FDA) and Health Canada have issued
warnings related to the usage of testosterone products
[41,42]. The FDA, however, also emphasized that the
benefits and safety of medications containing testoster-
one have not yet been established for the treatment of
hypogonadal men. In contrast to the early warning
from the FDA, The American Association of Clinical
Endocrinologists and The American College of
Endocrinology have produced an official position state-
ment indicating that “there is no compelling evidence
that testosterone therapy either increases or decreases
cardiovascular risk” [43]. Similarly, The European
Pharmacovigilance Risk Assessment Committee did
not find an association between TRT and cardiovascu-
lar risk [44]. These discrepant findings related to TRT
and CV risk arise from the methods and doses
employed. Oral TRT fails to increase testosterone levels
to the same extent as parenteral or transdermal delivery
systems [45], and may also cause hepatic injury [31].
Notably, a recent large, well-designed, retrospective
study of 83,010 veterans reported the relationship
between an adequate TRT-induced rise in the testoster-
one level and significant decreases in all-cause mortality
and CV risk [46]. This large cohort study suggest that
patients who failed to achieve adequate testosterone
levels using TRT would not benefit from this treatment.

Relationships between testosterone and
metabolic syndrome (MetS) or type 2 diabetes
mellitus (T2DM)

MetS includes a set of CV disease factors such as
abdominal obesity, dysglycemia (i.e., elevated fasting
glucose), dyslipidemia (i.e., elevated triglyceride
levels and low high-density lipoprotein (HDL) cho-
lesterol levels), and hypertension [47]. MetS is a risk
factor for T2DM, which also increases risk for CV
disease. Body fat distribution differs in men and
women, with an android type (visceral accumula-
tion) in men and the gynoid type (gluteal and
femoral accumulation) in women [48]; visceral fat
obesity is also a prevalent feature of MetS [49],
suggesting the involvement of sex hormones in
these fat distribution patterns and in MetS.
Actually, SRMA of cross-sectional studies has

revealed that a low testosterone level is commonly
associated with an increased risk for MetS [50–54] or
T2DM [53,55], after adjusting for age and body-mass
index or lifestyle. SRMA of longitudinal studies also
suggest a causal effect of low total testosterone levels
on the prevalence of MetS [50,51] and T2DM [54,55]
in men, while this associates with a lower risk in
women [54]. In addition, a low total testosterone
level is an independent risk factor for MetS and
T2DM [50], while a low free testosterone level also
increases the risk for MetS [51]. A SRMA of long-
itudinal studies indicated that low total or free tes-
tosterone is associated with abdominal obesity, high
triglyceride levels, hyperglycemia, low HDL levels,
and hypertension [51]. These associations were still
present for the low total testosterone level following
adjustment for age and lifestyle. This association was
strongest for abdominal obesity, hyperglycemia, and
high triglyceride levels, and weakest for hypertension
[51]. In addition, an increase in adipocyte mass and
hyperglycemia can reduce testosterone reduction,
resulting in progressive hypogonadism [56].

A SRMA of randomized controlled trials (RCTs)
indicated that TRT affected metabolic factors in
hypogonadal men. TRT can reduce body fat mass
and increase the fat-free mass, without affecting
body weight, body-mass index, or waist circumfer-
ence [29,45]. Reduction in fasting blood glucose levels
and insulin resistance (using homeostatic model
assessment) were also achievable [45]. TRT com-
monly decreases total cholesterol levels
[29,38,45,57]; however, no effect [29] or lowering
effects [57] have been reported for LDL cholesterol,
while a significant reduction [36], a tendency to be
lower [57], or no effect [45] has been reported for
HDL cholesterols.

Some clear beneficial effects on metabolic factors
have been reported in MetS and T2DM patients
receiving TRT. In hypogonadal MetS patients,
SRMA identified benefits of TRT including reduc-
tions in waist circumference, fasting glucose, and
insulin resistance, and an increase in HDL levels
[50,53]. SRMA of studies of T2DM patients with
hypogonadism indicated that TRT reduced fasting
glucose, glycated hemoglobin (HbA1c), triglyceride,
and body fat, but had no effect on total cholesterol or
HDL cholesterol levels, blood pressure, or body-mass
index [53,55,58]. In contrast, patients with MetS and/
or T2DM in the absence of classic hypogonadism did
not show these TRT benefits relating to glycemic
control [59].

A recent SRMAof observational studies indicated that
the duration of TRT administration affected patient out-
comes [60]. Reductions in body weight and waist cir-
cumference of −3.5 kg and −6.23 cm, respectively were
apparent after 2 years, but less marked after 1 year
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(−0.62 kg and −3.50 cm, respectively). In addition, a
meta-regression analysis indicated that the reductions
in body weight and waist circumference were more
obvious in younger and more hypogonadal subjects.
Generally, shorter follow-up terms are employed in
RCTs (average of 9months) than in observational studies
(average of > 18 months). The SRMA of observational
studies identified the improvements in fat mass, lean
body mass, fasting glycemia, and insulin resistance, as
well as in the levels of triglyceride, and total and HDL
cholesterol. In a large retrospective study of TRT, nor-
malization of testosterone levels conferred benefits relat-
ing to body-mass index, diabetes, and hypertension; the
follow up of the normalized-TRT group was
3.0 ± 2.7 years and that of the non-normalized group
was 1.5 ± 1.9 years [46]. Further long-term follow-up
RCTs are highly desirable.

Effects of androgen deprivation therapy for
prostate cancer patients on MetS, T2DM, and CV
disease

Prostate cancer is the most frequently diagnosed can-
cer in men and the second leading causes of cancer
death in men [61]. Androgen deprivation by physical
castration or chemical approaches using luteinizing
hormone-releasing hormone analogs or androgen
receptor (AR) blockade by antiandrogens is often
used before, during, and after radiation therapy for
prostate cancer. The side effects of this hormone
therapy on diabetes and cardiovascular risk were
first reported at 2006 [62]. A SRMA indicated that
androgen deprivation therapy reduced the risk of all-
cause mortality, without affecting CV death, demon-
strating the benefits of this therapy [63]. However,
other SRMA studies found 10–38% and 17%
increases in the incidence of CV disease and CV
death, respectively [64,65], and a 12% increase in
the risk for stroke [66]. SRMAs have also found that
androgen deprivation therapy altered body composi-
tion by increasing body fat and decreasing lean body
mass [67], increased the risk of diabetes by 36–39%
[68,69], and increased the risk for MetS by 75% [69].
These results provide a consensus that androgen
deprivation increases the risk of T2DM, MetS, and
CV disease. It is important to note that this relation-
ship indicates a causal of low androgen levels on
metabolic and CV diseases.

Summary of clinical and epidemiological studies

Epidemiological cohort studies indicate that a low
testosterone level is robustly associated with an
increased incidence of CV disease in males. The
associated obesity, T2DM, and altered lipid profiles
are linked to an increased CV risk [49]. Although
androgen deprivation therapy for prostate cancer

patients can reduce overall mortality [63], it can
increase the risk for CV disease by influencing body
composition (i.e., increasing fat and decreasing lean
mass) and glycemic control. These results strongly
suggest a causal relationship between a loss of andro-
gen function, metabolic disorder, and CV morbidity.
The observational period employed was found to
affect extent of the body weight changes observed
because a loss of lean mass decreases energy expen-
diture, leading to an increase in energy storage [60].

Overall, TRT may protect patients with hypogonad-
ism from MetS and T2DM. TRT-mediated protection
from CV disease is most marked in subjects with meta-
bolic derangements [34]. However, the effect of TRT on
CV risk remains controversial. This may reflect some
differences in the duration of TRT administration or the
study endopoint. Although TRT is effective in hypogo-
nadal men, blood testosterone levels are affected by
both circadian rhythms [70] and seasonal variation
[71]. A SRMA of placebo-controlled RCTs demon-
strated that the administration route affected the circu-
lating testosterone levels, with a mean testosterone
difference versus placebo of 7.69 nM (parenteral),
7.57 nM (transdermal), or 2.39 nM (oral) [45]. The
routes of delivery currently approved by the FDA are
buccal, nasal, subdermal, transdermal, and intramuscu-
lar. Oral administration fails to exert positive effects due
to extensive testosterone metabolism by detoxification
enzymes in the liver [31]. Although some modification
to testosterone can avoid this metabolism, this modifi-
cation causes liver toxicity [31]. For these reasons, oral
TRT is now not recommended. In addition to the
delivery route, the pharmacokinetics of the testoster-
one-derivatives used for TRT are variable [31]. A recent
large longitudinal cohort study revealed the importance
of circulating testosterone levels to the outcome of TRT
[46]. Hematocrit levels are closely associated with TRT-
induced increase in testosterone levels, and these can be
used to monitor patients [35–37]. This is important
because both supraphysiological and subphysiological
levels of testosterone can increase the risk of CV disease
in men, indicating a U-shaped relationship between
these factors [72–75]. In addition, delivery of excess
testosterone does not bring any added beneficial effects
[75]. Therefore, more consistent outcomes could be
achieved by selection of the most appropriate delivery
route, by monitoring testosterone levels, and by deter-
mining the optimum treatment duration.

In contrast to studies conducted in European and
American men, total testosterone levels were not found
to decline with age in Japanese men [76]. Different
clinical and pathophysiological phenotypes are also
observed in T2DM patients and obese subjects in
Asian and Western populations [48,77]. In addition,
Korean historical records (from the 14th to the early
20th century) indicate that Korean eunuchs (castrated
men) had longer lifespans than non-castrated men of a
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similar socio-economic status [78]. On the other hand,
the lifespans of prepubertally castrated males and intact
male singers did not differ in Europe between the end of
the 16th century to the middle of the 19th century [79].
Epidemiological studies have mostly been performed in
Western countries and it is therefore important to
investigate the effects of testosterone in study groups
from Asia and other regions. In addition, it is also
unclear whether the association between low testoster-
one levels and highmortality appeared in the late of 20th

and 21st centuries.
The etiology of hypogonadism involves a decline

in testosterone synthesis by Leydig cells during aging
[80]. A decline in the hypothalamus–pituitary axis is
also observed in hypogonadal men [81]. Exogenous
TRT reduces endogenous testosterone production via
negative feedback of the hypothalamus–pituitary axis,
and this may accelerate the decline of the testes. This
indicates that in longer term, increasing endogenous
testosterone production represents a better alternative
to TRT. Therefore, it is reasonable to investigate
whether endogenous testosterone levels can be
increased by physical exercise [82] or dietary inter-
ventions (e.g., low calorie diet [83]) before adminis-
tering TRT.

Androgens and energy metabolism: rodent
mechanistic studies

Mechanisms of action

The effects of androgens such as testosterone and its
active metabolite, dihydrotestosterone, are mediated by
the AR, which is a member of the nuclear receptor
superfamily of ligand-activated transcription factors
[84]. The ligand-activated AR binds to the androgen
response element within target gene promoters [85] and
thus stimulates the transcription of target genes.
Coactivators and corepressors are essential for themod-
ulation of AR transactivation [86–91]. Exon 1 in the AR
gene contains polymorphic CAG and GGN trinucleo-
tide repeats, which affect the transcriptional activity of
the AR [92]. Two separate short polyglutamine repeats,
proximal to the C-terminus of the polymorphic poly-
glutamine tract, are also involved in AR transactivation
[93]. AR-mediated androgen activities contribute to the
development and functions of male reproductive tissues
[94] such as the prostate, seminal vesicle, and epididy-
mis, and also to the development of non-reproductive
tissues such as the liver [95], adipocyte [96,97], muscle
[98], kidney [99], heart [100], adrenal gland [101], and
pancreatic β-cells [102,103]. The mechanisms under-
lying the links between testosterone and energy meta-
bolism have been studied using rodent models of
castration and AR knockout (AR-KO). The AR-KO
model is useful for understanding the role of androgen
in specific organs [104–110]. Castration decreased heart

weight [111], suggesting a role in the heart. Global AR-
KO produces angiotensin II-induced cardiac fibrosis
[100]. AR-KO and castration accelerated atherosclerosis
in apolipoprotein E-deficient background [112],
whereas in mice lacking a receptor for LDL, macro-
phage-specific AR-KO reduced atheromatous lesions
[113]. These results suggest that androgens directly
affect the cardiac muscle cells, as well as the vascular
endothelial and smooth muscle cells, and thus have an
effect on CV disease without affecting energy metabo-
lism [114]. This review focuses on rodent studies of the
effects of androgen ablation on energy metabolism,
including body composition and T2DM, because these
were involved in CV risk and are evident and important
in the clinical and epidemiological studies described
above. In addition, the characteristics of global and
tissue-specific AR-KO mice are summarized in Table 2.

Body weight, obesity, and adipose tissue mass

Changes in body composition following castration
are well characterized in domesticated animals such
as cattle, sheep, and pigs [115,116]. As a common
feature, castration increases the ratio of fat mass to
lean mass, but its effects on feed efficiency (body
weight gain/calorie intake) and body weight are not
consistent [115,116]. Aggressive body weight gain
and increased food consumption are observed in
rabbits and pigs following castration [116,117].
Castration-dependent weight gain is also observed
in hamsters [118]; in contrast to humans, the adult
female hamster is heavier than the male [119].
Although the increase in calorie intake resulting
from increased food consumption directly causes
body weight gain, castration decreases calorie intake
in male mice and rats [111,120–123]. Investigations
of castration-induced obesity and adipose tissue accu-
mulation are rather limited in these extensively stu-
died laboratory animals. Although it is still unclear
whether testosterone affects food consumption in
humans, accumulating data from clinical and epide-
miological studies indicate that a low testosterone
level increases body fat mass, abdominal obesity,
and weight gain. Therefore, this review highlights
the characteristics of castrated or AR-KO mice exhi-
biting obesity.

AR-KO mice show characteristic late-onset obesity
after puberty [124–126]. This obese phenotype is
observed in multiple laboratories, but not in every
laboratory [124–132]. In castration models, the obese
phenotype is observed when mice are castrated before
[133] or after [111] maturation, although controversy
remains [120–122,128,134–137]. These results suggest
that while androgen ablation by AR-KO or castration
can cause obesity in laboratory animals, androgen
ablation alone may be insufficient for the develop-
ment of obesity. Genomic background and/or growth
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environment are probably involved in these
differences.

Castration-induced obesity is high-fat diet (HFD)-
dependent and is due to an increase in feed efficiency
[111]. This increase seems to be important for the
development of obesity in AR-KO mice, where food
consumption is unchanged but significant body
weight gain is observed [124]. The AR-KO and cas-
tration models produce similar results relating body
weight and body composition [128]. Both body
weight and food intake are decreased when andro-
gen-ablated mice are fed standard chow. On the other
hand, control and androgen-ablated mice have com-
parable body weights, even though food intake is
decreased by approximately 25% in androgen-ablated
mice receiving a HFD [128], confirming an increase
in feed efficiency. The HFD-fed androgen-ablated
mice exhibit an increase in fat accumulation and a
decrease of lean body mass, in association with glu-
cose intolerance, insulin resistance, and fatty liver
[128]. These results suggest that the androgen-ablated
obese phenotype is highly dependent on the type of
food consumed. In addition to obesity, these finding
suggest that the augmentation of feed efficiency is
associated with metabolic changes in androgen-
ablated mice.

Castrated obese mice have an elevated rectal body
temperature [111,138], whereas non-obese castrated
mice do not show such differences in heat generation
[128]. On the other hand, oxygen consumption is
decreased in obese AR-KO mice [126] but not in
non-obese AR-KO mice or castrated mice [127,128].
These results suggest that a decrease in oxygen con-
sumption, except for heat production, is involved, at
least in part, in the development of obesity.

Body fat distribution is important in metabolic
and CV diseases [47,49]. Visceral fat accumulation
or increased visceral-to-subcutaneous fat ratio
increases the risk for CV disease. AR expression is
observed in both visceral and subcutaneous white
adipose tissue, and its expression is higher in visceral
fat than in subcutaneous fat [139]. These results sug-
gest that fat tissue is a direct target of androgen–AR
signaling. The obese phenotype in androgen-ablated
mice is accompanied by excess accumulation of visc-
eral fat [111,124–126]. In addition, mice lacking AR
function due to a deletion of its DNA-binding
domain (using Artm1Jdz

floxed strain) exhibit late-
onset catch-up body weight gain and exceed the
body weight of the control group; these changes
involve an increase in visceral fat levels [127]. In
contrast, the accumulation of subcutaneous fat mass
is observed in androgen ablation, irrespective of body
weight [111,124,126–128,136]. It seems likely that the
accumulation of visceral fat, but not of subcutaneous
fat, is associated with androgen ablation-induced obe-
sity and metabolic disorder.

Adipose tissue-specific AR-KO mice receiving a
standard diet do not develop obesity or visceral fat
accumulation [96,97]. When these adipocyte AR-KO
mice are fed with a HFD, they accumulate visceral fat
but are not overweight [97], suggesting that an
increase in visceral fat mass by AR-KO is insufficient
to induce weight-gain. In contrast, liver-specific AR-
KO mice are overweight and also develop fatty liver
and visceral obesity in an HFD-dependent manner
[95]. In the absence of an increased food intake,
neuronal AR-KO also produces late-onset obesity,
with visceral fat and liver triglyceride accumulation
[140], although inconsistencies remain [141,142].
Fatty liver is also observed in mice with obesity
induced by castration [111] or global AR-KO [125];
whereas, an obese phenotype also occurs by other
AR-KO mice without incidence of fatty liver [126].
Although there is no consensus among these results,
it is likely that visceral fat accumulation is necessary
and that the liver contributes to low androgen-
induced obesity. In addition, fatty liver might be
associated with the development of impaired fasting
glucose.

A decrease in lipolysis, rather than an increase in
lipogenesis, can cause the accumulation of visceral
(mesenteric and intraperitoneal) fat. The expression
of adipocyte triglyceride lipase [111], hormone-sensi-
tive lipase [111,126], and lipoprotein lipase [126] are
suppressed in visceral fat from castrated or global
AR-KO obese mice. In contrast, increasing lipogen-
esis and free fatty acid transport appears to be
responsible for androgen deficiency-induced trigly-
ceride accumulation in the liver [111,143]. An
increased expression of lipogenic genes is observed
in the liver of hepatocyte AR-KO mice [95] and in
neuronal AR-KO mice [140]. These results suggest
that both direct and indirect androgen effects are
involved in the regulation of lipogenic gene expres-
sion in the liver, and that androgens differentially
regulate lipid metabolism in visceral adipose tissue
and the liver.

The castration-induced obese phenotype is disap-
peared when mice were treated with antibiotics, sug-
gesting the involvement of gut microbiota [111,138].
The gut microbiota is strongly associated with obesity
[144–147]. Recently, androgen effects on gut micro-
biota have become increasingly apparent [148–151]
and are involved in the sex bias of some diseases. It is
possible that indirect androgen effects on the gut
microbiome are stronger than the direct effects on
visceral fat regulation.

Muscle and lean body mass

Thigh circumference is negatively associated with
the prevalence of CV morbidity and mortality
[152], suggesting the importance of thigh muscle
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mass. The muscle-specific AR-KO did not show a
loss of quadricep mass [98,153], whereas global AR-
KO mice show this phenotype [129,154]. In addi-
tion, global AR-KO mice showed inferior limb
decreases (i.e., gastrocnemius and soleus) [131].
On the other hand, skeletal muscle myofiber AR-
KO mice showed decreases [98] or no effect [153]
on inferior limb mass. Muscle satellite cell-specific
AR-KO also did not affect the inferior muscle mass
[155]. Castration-dependent muscle loss is more
prominent in non-postural muscles than in the pos-
tural muscle of the forelimb, whereas similar reduc-
tions in muscle mass are observed in both the
postural and non-postural muscles of the hindlimb
[133]. On the other hand, castrated and global AR-
KO mice show decreases in relative lean mass in a
HFD-dependent manner [128]. Castration induced
the loss of thigh muscle (quadriceps and hamstring)
mass in a HFD-dependent manner; however, the
loss of thigh muscle was not induced by castration
when the mice were administered antibiotics [111].
Taken together, inferior limb and thigh muscle may
represent weak and/or indirect androgen target,
whereas the levator ani is a strong and direct andro-
gen target [98]. Gut microbiota is involved in muscle
loss [156], while it remains unclear whether changes
in the gut environment are involved in low testos-
terone-associated loss of lean body mass.

Insulin sensitivity

Men have lower blood adiponectin levels than women
[157–160]. Increased adiponectin levels can alleviate
insulin resistance. Inconsistent effects of androgen on
adiponectin levels have been reported. Both negative
[138,158,161] and positive [128,159,160], associations
with testosterone levels have been reported. A similar
lack of consistency is present in findings in AR-KOmale
mice [125–127].

Non-obese castrated rats show exacerbated hepatic
and extra-hepatic (including muscle) insulin resistance,
which increases the fasting glucose level [162]. Obese
AR-KO or castrated mice showed a decreased
[95,125,140] or unchanged [111,126] insulin sensitivity.
In the latter cases, adiponectin levels were increased by
androgen deficiency [111,126]. Non-obese AR-KO and
castrated mice exhibited decreased [128] or unchanged
[127] insulin sensitivity and decreased [128] or
increased [127] adiponectin levels, respectively.
Therefore, the regulation of adiponectin by androgen
deficiency may affect insulin sensitivity. In addition, it
is unlikely that insulin sensitivity due to androgen
ablation is associated with obesity.

Insulin secretion by pancreatic β-cells

Pancreatic β-cells are responsible for the production
and secretion of insulin, which reduces blood glucose
concentrations. Therefore, the maintenance of insulin
secretion by β-cells is important for the prevention of
T2DM. The amount of insulin secreted depends on
β-cell mass and β-cell function (i.e., the ability of each
β-cell to secrete insulin in response to glucose);
reductions in either these variable can contribute to
the development of T2DM [163–166]. Androgen sig-
naling seems to serve different roles in β-cell function
in a species-dependent manner [103,167]. β-Cell AR-
KO male mice exhibited reduced insulin secretion,
without a loss of β-cell mass, and HFD-dependent
glucose intolerance [102]. In mice, the extranuclear
AR stimulates glucagon-like peptide-1 signaling, lead-
ing to an enhancement of insulin secretion. In male
rats, the AR is predominantly localized in the nucleus
[103,168] and increases β-cell mass both by increas-
ing β-cell growth and reducing β-cell death [103].
Ten weeks after castration, the β-cell mass was
reduced to 30% of that observed in control rats and
an excessive rise in glucose levels was observed
30 min after glucose injection [103]. This type of
glucose intolerance reflects impairment of β-cell
function [166], and castration has been shown to
decrease insulin levels following a glucose load in
male rats [162]. Testosterone also increases insulin
expression [169] and suppresses the β-cell death
induced by streptozotocin in male rats [170,171]. In
contrast to rats, castration does not affect β-cell mass
in male mice [103], and it decreases streptozotocin-
induced cell-death [172,173]. These differences may
be attributed to the different subcellular localization
of β-cell AR in mice and rats [103]. Collectively, β-
cell androgen signaling contributes to insulin secre-
tion and prevents T2DM development both in male
rats and in male mice. In β-cells, key signaling mole-
cules involved in insulin secretion and β-cell devel-
opment, such as the glucagon-like peptide-1 receptor,
insulin receptor β, PDX-1, and MafA are decreased
by hyperglycemia [174–179]. β-Cell AR protein is
also degraded by the ubiquitin-proteasome system
under chronic high-glucose conditions [103], sug-
gesting the attenuation of androgen signaling under
pathologic conditions. Therefore, hyperglycemia-
induced AR degradation may contribute to β-cell
failure. Although extranuclear AR is observed in
human β-cells [102], detailed analyses of AR localiza-
tion at different life stages, or for a range of genetic
backgrounds, are desirable because the β-cell mass is
almost completely formed by the age of 20 years old
in humans.

1676 N. HARADA



Summary of rodent studies

In mice, castration and AR-KO do not consistently
produce obesity and glucose intolerance. Unlike the
hyperphagia caused by ovariectomy in females [180], a
decrease in food intake was caused by a loss of andro-
gen function and this could at least partially explain the
failure to cause metabolic diseases in rodents. However,
several rodent studies found that androgen deficiency
induced metabolic dysfunction. In some models,
administration of a HFD is required for the induction
of metabolic dysfunction in androgen-ablated mice.
Competition or compensation between androgen sig-
naling and glucocorticoid signaling may be involved in
metabolic disorders [181]. Apart from the direct effects
of androgens on β-cells and hepatocytes, indirect effects
seemed to result in an increase of adipose tissue mass,
fatty liver, or loss of muscle mass. Future studies are
needed to clarify the mechanisms by which androgen
deficiency induces metabolic disorders.
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